• Title/Summary/Keyword: high GC region

Search Result 34, Processing Time 0.02 seconds

Genome wide association study of fatty acid composition in Duroc swine

  • Viterbo, Vanessa S.;Lopez, Bryan Irvine M.;Kang, Hyunsung;Kim, Hoonseop;Song, Choul-won;Seo, Kang Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1127-1133
    • /
    • 2018
  • Objective: Genome wide association study was conducted to identify and validate candidate genes associated with fatty acid composition of pork. Methods: A total of 480 purebreed Duroc pigs were genotyped using IlluminaPorcine60k bead chips while the association test was implemented following genome-wide rapid association using Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. Results: A total of 25, 29, and 16 single nucleotide polymorphisms (SNPs) were significantly associated with stearic (18:0), oleic (18:1) and saturated fatty acids (SFA), respectively. Genome wide significant variants were located on the same region of swine chromosome 14 (SSC14) that spanned from 120 to 124 Mb. Top SNP ALGA008191 was located at 5 kb near the stearoyl-CoA desaturase (SCD) gene. This gene is directly involved in desaturation of stearic acid into oleic acid. General relationship of significant SNPs showed high linkage disequilibrium thus genome-wide signals was attributed to SCD gene. However, understanding the role of other genes like elongation of very long chain fatty acids-3 (ELOVL3) located on this chromosomal segment might help in further understanding of metabolism and biosynthesis of fatty acids. Conclusion: Overall, this study provides evidence that validates SCD gene as strong candidate gene associated with fatty acid composition in Duroc pigs. Moreover, this study confirms significant SNPs near ELOVL3 gene.

The Complete Mitochondrial Genome of Nysius plebeius Distant, 1883 (Heteroptera: Lygaeidae) from Korea (한국에 서식하는 애긴노린재(노린재목: 긴노린재과)의 미토콘드리아 전장 유전체)

  • Jiyeong Shin;Rameswor Maharjan;Hwijong Yi;Minkyu Jeong;Juil Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.2
    • /
    • pp.83-87
    • /
    • 2023
  • Nysius plebeius is a major lygaeid pest of various cereal crops and ornamental plants in East Asian countries, including Korea. The complete mitochondrial genome of N. plebeius was characterized and found to comprise a total of 17,367 bp, which included 13 protein-coding genes, NADH dehydrogenase components (complex I, ND), cytochrome oxidase subunits (complex VI, COX), cytochrome oxidase b (CYPB), two ATP synthases, two ribosomal RNA genes, and 22 transfer RNAs. The GC content of 23%. It showed high sequence similarity to other Lygaeidae species, such as N. cymoides (94.5%), N. fuscovittatus (91.7%), and an unknown Nysius species (94.1%). This new N. plebeius mitochondrial genome can be widely used for evolutionary studies of Lygaeidae and to improve pest management practices.

Correlation Between Primary Tuberculous Pleurisy and NRAMP1 Genetic Polymorphism (결핵성 흉막염 환자에서 NRAMP1 유전자 다형성에 대한 연구)

  • Kim, Je-Hyeong;Kim, Byung-Gyu;Jung, Ki-Hwan;Park, Sang-Myun;Lee, Sang-Youb;Lee, Sin-Hyung;Sin, Cheol;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.155-165
    • /
    • 2000
  • Background: The phagolysosomal function of alveolar macrophage against M. tuberculosis infection is influenced by Nramp1, which is encoded by the NRAMP1 gene. There are several genetic polymorphisms in NRAMP1, and these polymorphisms affect the innate host resistance through the defect in production and function of Nramp1. To investigate this relationship, the NRAMP1 genetic polymorphism in patients with primary tuberculous pleurisy was determined. Methods: Fifty-six primary tuberculous pleurisy patient, who were diagnosed by pleural biopsy, were designated to the pleurisy group and 45 healthy adults were designated to the healthy control group. Three genetic polymorphisms of NRAMP1, such as a single point mutation in intron 4(469+14G/C, INT4), a nonconservative single-base substitution at codon 543 that changes aspartic acid to asparagine(D543N) and a TGTG deletion in the 3' untranslated region(1729+55delI4, 3'UTR), were determined. Polymerase chain reaction(PCR) and polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) were used. Results: The frequencies of mutant genotypes of INT4 and 3'UTR were significantly high in pleurisy group(p=0.001, p=0.023). But the frequencies of D543N were not significantly different between the two groups(p=0.079). The odds ratios, which are a comparison with wild genotype for determining mutant genotypes, were 8. 022(95% confidence interval=2.422-26.572) for INT4 and 5.733(95% confidence interval = 1.137~28.916) for 3'UTR ; these were statistically significant But the ratio for D543N was not significant In the combined analysis of the INT4 and 3'UTR polymorphisms, the odds ratios were 6.000(95% confidence interval = 1.461~24.640) for GC/++ genotype and 14.000(95% confidence interval=1.610~121.754) for GC/+del when compared with GG/++ homozygotes ; these were statistically significant. Conclusion: Among the NRAMP1 genetic polymorphisms, a single point mutation in intron 4(469+14G/C, INT4) and a TGTG deletion in the 3' untranslated region(1729+55del4, 3'UTR) were closely related to the primary tuberculous pleurisy.

  • PDF

Comparison of Chemical Constituents in Mung bean (Vigna radiata L.) Flour between Cultivation Regions and Seeding Dates

  • An, Yeon Ju;Kim, Mi Jung;Han, Sang Ik;Chi, Hee-Youn;Kwon, Chang;Kim, So Yeon;Yang, Yu Jin;Kim, Yun Ju;Moon, Hee Sung;Kim, Seung-Hyun;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.457-467
    • /
    • 2020
  • Legumes are one of the largest families of crop plants and are widely consumed and produced for their nutritional and commercial benefits. Mung bean (Vigna radiata L.) is a legume crop that contains various functional compounds ; moreover, it has strong antioxidant properties and is becoming an increasingly important food crop. However, most previous studies on mung beans have focused on their primary metabolites. In this study, we investigated the composition and contents of phenolic compounds, fatty acids, soyasapogenol and tocopherol in mung beans cultivated in different regions and cultivated at different seeding dates. Material analysis was conducted using the following methods: LC-MS/MS, GC-FID and HPLC-ELSD. In total, 57 different samples were analyzed. Thirteen phenolic compounds were detected in mung beans. Of these, vitexin and isovitexin were the most abundant compounds, accounting for approximately 99% of phenolic compounds. The difference in phenol compounds according to the seeding dates of mung bean was not statistically significant. The total fatty acid content in beans was the highest in Pyeongchang. Significant differences in total fatty acid content were found according to the cultivation regions. Crops grown in Sohyeon and Dahyeon showed the highest soyasapogenol B content in the Suwon region, and these were the lowest in Jeonju. The total tocopherol content of beans cultivated in Dahyeon and Sohyeon was the lowest and highest in Pyeongchang. Soyasapogenol B and total tocopherol content were not significantly different according to seeding dates. This study was conducted to obtain basic data for the cultivation of mung beans with a high content of various functional materials in terms of regional specialization and optimal seeding time.