References
- Wood J, Enser M, Fisher A, et al. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 2008;78:343-58. https://doi.org/10.1016/j.meatsci.2007.07.019
- Gjerlaug-Enger E, Aass L, Odegard J, Kongsro J, Vangen O. Genetic parameter of fat quality in pigs measured by near-infrared spectroscopy. Animal 2011;5:1495-505. https://doi.org/10.1017/S1751731111000528
- Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-44. https://doi.org/10.1001/jama.299.11.1335
- Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497-509.
- Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
- Aulchenko YS, De Koning D-J, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 2007;177:577-85. https://doi.org/10.1534/genetics.107.075614
- Amin N, Van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PloS One 2007;2:e1274. https://doi.org/10.1371/journal.pone.0001274
- Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90-POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. Proceedings 10th World Congress Genetics Applied Livestock Production; 2014.
- Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-5. https://doi.org/10.1093/bioinformatics/bth457
- National Center for Biotechnology Information (NCBI) [Internet]. Bethesda, MD, USA: National Library of Medicine (US), National Center for Biotechnology Information; 1988 [cited 2017 Oct 20]. Available from: http://www.ncbi.nlm.nih.gov
- Jiao X, Sherman BT, Huang DW, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012;28:1805-6. https://doi.org/10.1093/bioinformatics/bts251
- Klensporf-Pawlik D, Szydlowski M, Kaczmarek A, et al. The fatty acid composition of the Longissimus dorsi muscle, subcutaneous and visceral fats differ in four commercial pig breeds. J Anim Feed Sci 2012;21:661-76. https://doi.org/10.22358/jafs/66139/2012
- Uemoto Y, Nakano H, Kikuchi T, et al. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Anim Genet 2012;43:225-8. https://doi.org/10.1111/j.1365-2052.2011.02236.x
- Yang B, Zhang W, Zhang Z, et al. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues. PloS One 2013;8:e65554. https://doi.org/10.1371/journal.pone.0065554
- Munoz M, Rodriguez MC, Alves E, et al. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics 2013;14:845. https://doi.org/10.1186/1471-2164-14-845
- Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 2010;49:186-99. https://doi.org/10.1016/j.plipres.2009.12.002
- Miyazaki M, Ntambi JM. Role of stearoyl-coenzyme A desaturase in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 2003;68:113-21. https://doi.org/10.1016/S0952-3278(02)00261-2
- Zhao S, Ren L, Chen L, et al. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition. Lipids 2009;44:1029-37. https://doi.org/10.1007/s11745-009-3356-9
- Zhang W, Zhang J, Cui L, et al. Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genet Sel Evol 2016;48:5. https://doi.org/10.1186/s12711-016-0184-2
- Henriquez-Rodriguez E, Tor M, Pena R, Estany J. A polymorphism in the stearoyl-CoA desaturase gene promoter increases monounsaturated fatty acid content in dry-cured ham. Meat Sci 2015;106:38-43. https://doi.org/10.1016/j.meatsci.2015.03.019
- Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res 2006;45:237-49. https://doi.org/10.1016/j.plipres.2006.01.004
- Wilkinson S, Lu ZH, Megens H-J, et al. Signatures of diversifying selection in European pig breeds. PLoS Genet 2013;9:e1003453. https://doi.org/10.1371/journal.pgen.1003453
-
Kobayashi T, Fujimori K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and
$PPAR{\gamma}$ in 3T3-L1 cells. Am J Physiol Endocrinol Metab 2012;302:E1461-E71. https://doi.org/10.1152/ajpendo.00623.2011 - Ros-Freixedes R, Gol S, Pena RN, et al. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in Duroc pigs. PloS One 2016;11:e0152496. https://doi.org/10.1371/journal.pone.0152496
Cited by
- Identification of genes related to intramuscular fat independent of backfat thickness in Duroc pigs using single‐step genome‐wide association vol.52, pp.1, 2018, https://doi.org/10.1111/age.13012
- Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies vol.10, pp.4, 2018, https://doi.org/10.3390/foods10040872
- Chemical Characteristics of Croatian Traditional Istarski pršut (PDO) Produced from Two Different Pig Genotypes vol.26, pp.14, 2018, https://doi.org/10.3390/molecules26144140