• Title/Summary/Keyword: high Cr steel

Search Result 508, Processing Time 0.035 seconds

Numerical analysis of chromium deposition through the SOFC cathode channel (고체 산화물 연료전지의 공기극 유로내 크롬 피독에 관한 전산해석)

  • Park, Joon-Guen;Bae, Joong-Myeon;Lee, Shin-Ku;Nabielek, Heinz
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.372-375
    • /
    • 2006
  • SOFC is a high temperature fuelcell with many advantages, but it also have several demerits. One of the Issues is cathode poisoning of Cr coming from stainless steel interconnects. Diffusion process of Cr evaporated from the surface of interconnect steel was calculated by using CFD technique to understand factors for Cr deposition. It has been cleared that factors concerned in Cr deposition and how they affect Cr deposition. Major variables for Cr deposit ion are diffusion coefficient, air velocity and temperature If diffusion coefficient decreases, Cr concentration increases in the air but decreases on the cathode surface. Increasing in air velocity, Cr concentration decreases in the air and on the cathode surface. Increase in temperature leads to rising Cr concentration on the cathode surface because of diffusion coefficient increment.

  • PDF

A Program Development of Life Prediction Simulation for Multi-Surface Cracks on the Finite Plate (무한 평면체에 존재하는 복수 표면균열의 성장에 대한 수명예측용 시뮬레이션 개발에 관한 연구)

  • 황남성;서창민;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.61-75
    • /
    • 1997
  • The social demand urges us to use some equipments and structures in high temperature environment. By this occasion, the necessity of studying the fatigue crack growth is an important aspect of new materials. However, the present situation is rarely to accumulate the fatigue data. Especially, 1Cr-1Mo-0.25V steel and 304 stainless steel have been increased to be used under the severe condition of high temperature. And so, the fatigue estimation of those materials is important and appropriate. Fatigue tests have been carried out to examine the crack initiation, growth behaviour for the small fatigue crack of 1Cr-1Mo-0.25V steel and 304 stainless steel at room temperature and 538^{\circ}C$. The remote measurement system which has many merits of checking and saving the image for detailed examination was applied to closely detect the crack length. Generally, the fatigue crack initiated in the form of multiple cracks and grew each other. And then it coalesced to become a major crack. The major crack governed the rest of the fatigue life. In the growing process, each peripheral cracks interact and grow for a certain period. After then, it coalesced and fractured. On the basis of the above experimental data for the small crack, a simulation program was developed to predict the residual life time and to estimate the integrity of machine elements and structures. At the same time, the simulation was extended to 1Cr-1Mo-0.25V steel. The simulation results have shown a good agreement to those of the experimental ones for both materials of 1Cr-1Mo-0.25V steel and 304 stainless steel with small cracks. The NASCRAC has applied to compare the fatigue life with the experimental results. And so, it can be said that the simulation program is valuable tools to the industrial fields.

  • PDF

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Phase Changes during High Temperature Gas Nitriding of Nb Alloyed STS 444 Ferritic Stainless steel (Nb이 첨가된 STS 444 페라이트계 스테인리스강의 고온질화 열처리시 조직변화)

  • Kong, J.H.;Yoo, D.K.;Lee, H.W.;Kim, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.323-328
    • /
    • 2007
  • This study has been investigated the effect of high temperature gas nitriding (HTGN) heat treatment of STS 444 (18Cr-0.01Ni-0.01C-0.2Nb) ferritic stainless steel in an atmosphere of nitrogen gas at the temperature range between $1050^{\circ}C\;and\;1150^{\circ}C$. The surface layer was changed into martensite and austenite with the nitrides of NbCrN by HTGN treatment. Due to the precipitation of nitrides and matrensite formation, the hardness of the surface layer showed $400Hv{\sim}530Hv$. The nitrogen concentration of the surface layer appeared as 0.05%, 0.12% and 0.92%, respectively, at $1050^{\circ}C,\;1100^{\circ}C\;and\;1150^{\circ}C$. When the nitrogen is permeated from surface to interior, Nb and Cr, which have strong affinities with nitrogen, also move from interior to surface. Therefore it is considered that this counter-current of atoms promotes the formation of NbCrN at the surface layer.

Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity (고에너지용 저합금강 제동디스크의 마모 특성 평가)

  • Dong-gyu Lee;Kyung-il Kim;Gue-Serb Cho;Kyung-taek Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.532-537
    • /
    • 2024
  • In this study, wear characteristics and microstructure changes due to changes in alloy composition of Ni-Cr-Mo-V and Ni-Cr-Mo low-alloy steels used in brake discs for transportation system such as aircraft and high-speed trains. As a result of the hardness test, the hardness of C-Mo-V steel was the highest at 39.4±0.9HRc, and the hardness of Ni-Cr-Mo steel was the lowest at 32.4±0.6HRc. The friction coefficient tended to decrease as the vertical load increased. At a vertical load of 1 N, the friction coefficient of Ni-Cr-Mo steel was the highest at 0.842, and at a vertical load of 5 N, Mn-Cr-V steel was the highest at 0.696. Ni-Cr-Mo showed the largest wear scar width, depth, and wear amount, with a width of 711 ㎛, a depth of 8.24 ㎛, and a wear amount of 11 mg under a vertical load of 1 N, and a width of 1,017 ㎛, a depth of 19.17 ㎛, and a wear amount of 17 mg under a vertical load of 5 N. As a result of wear mechanism analysis, ploughing, delamination, and adhesion in all specimens, with plastic deformation being more prominently observed in Ni-Cr-Mo.

Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding (고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향)

  • Kim, J.M.;Hyun, Y.K.;Song, S.W.;Kim, G.D.;Son, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

Effect of Mo addition on the Creep Properties of 9Cr-3W Steel (9Cr-3W 강의 크리프 특성에 미치는 Mo 첨가의 영향)

  • Kim, Yong-Rai;Jang, Jinsung;Kim, Tae-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The effect of the Mo addition on the high temperature creep properties of the 9Cr-3W steel was also evaluated. Two experimental steels, (9Cr-3W and 9Cr-3W-0.5Mo), were prepared using a vacuum induction melting process, followed by hot rolling and heat treatment processes. Three types of precipitates, ($M_{23}C_6$, Nb-rich MX and V-rich MX) were observed in a typical tempered martensitic matrix. Significant effects of the Mo addition on the tensile properties were not observed. However, the creep properties at $650^{\circ}C$ under applied stresses of 140 and 150 MPa were considerably enhanced by the Mo addition. The microstructural observation after the creep test indicated that the addition of Mo could function to retain the recovery of the martensitic matrix, thus resulting in the enhanced creep properties of the 9Cr-3W-0.5Mo steel. Furthermore coarsening of the $M_{23}C_6$ carbides and formation of Laves phases were observed in both samples after the creep tests.

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.