• Title/Summary/Keyword: hierarchical data

Search Result 3,051, Processing Time 0.032 seconds

RAG-based Hierarchical Classification (RAG 기반 계층 분류 (2))

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • This study proposed an unsupervised image classification through the dendrogram of agglomerative clustering as a higher stage of image segmentation in image processing. The proposed algorithm is a hierarchical clustering which includes searching a set of MCSNP (Mutual Closest Spectral Neighbor Pairs) based on the data structures of RAG(Regional Adjacency Graph) defined on spectral space and Min-Heap. It also employes a multi-window system in spectral space to define the spectral adjacency. RAG is updated for the change due to merging using RNV (Regional Neighbor Vector). The proposed algorithm provides a dendrogram which is a graphical representation of data. The hierarchical relationship in clustering can be easily interpreted in the dendrogram. In this study, the proposed algorithm has been extensively evaluated using simulated images and applied to very large QuickBird imagery acquired over an area of Korean Peninsula. The results have shown it potentiality for the application of remotely-sensed imagery.

Design of a Hierarchical Dimension of the Bill of Materials Type (자재소요명세서 유형 계층차원의 설계)

  • Jang Se-Hyeon;Yu Han-Ju;Choi In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.243-250
    • /
    • 2006
  • A recursive relationship is a relationship among entities of the same class. N : M recursive relationships can be used to represent bills of materials. A bill of materials is a special data structure that occurs frequently in manufacturing applications. This data structure is a hierarchy. Most business dimensions have a hierarchical structure. In this study, a design of a hierarchical dimension of the bill of materials type is carried out. As with other N : M relationships, an intersection table that shows pairs of related rows is created, and this table is transformed into a dimension in the OLAP(OnLine Analytical Processing) model. This transformation consists of two tasks: (1)replacing the first column of the intersection table with the lowest level of the dimension: and (2)replacing the second column of the table with the only upper level of the dimension. A case multidimensional information system using the hierarchical dimension is also developed.

  • PDF

Classification of Textural Descriptors for Establishing Texture Naming System(TNS) of Fabrics -Textural Descriptions of Women's Suits Fabrics for Fall/winter Seasons- (옷감의 질감 명명 체계 확립을 위한 질감 속성자 분류 -여성 슈트용 추동복지의 질감 속성을 중심으로-)

  • Han Eun-Gyeong;Kim Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.699-710
    • /
    • 2006
  • The objective of this study was to identify the texture-related components of woven fabrics and to develop a multidimensional perceptual structure map to represent the tactile textures. Eighty subjects in clothing and tektite industries were selected for multivariate data on each fabric of 30 using the questionnaire with 9 pointed semantic differential scales of 20 texture-related adjectives. Data were analyzed by factor analysis, hierarchical cluster analysis, and multidimensional scaling(MDS) using SPSS statistical package. The results showed that the five factors were selected and composed of density/warmth-coolness, stiffness, extensibility, drapeability, and surface/slipperiness. As a result of hierarchical cluster analysis, 30 fabrics were grouped by four clusters; each cluster was named with density/warmth-coolness, surface/slipperiness, stiffness, and extensibility, respectively. By MDS, three dimensions of tactile texture were obtained and a 3-dimensional perceptual structure map was suggested. The three dimensions were named as surface/slipperiness, extensibility, and stiffness. We proposed a positioning perceptual map of fabrics related to texture naming system(TNS). To classify the textural features of the woven fabrics, hierarchical cluster analysis containing all the data variations, even though it includes the errors, may be more desirable than texture-related multidimensional data analysis based on factor loading values in respect of the effective variables reduction without losing the critical variations.

Adaptive Load Balancing Scheme using a Combination of Hierarchical Data Structures and 3D Clustering for Parallel Volume Rendering on GPU Clusters (계층 자료구조의 결합과 3차원 클러스터링을 이용하여 적응적으로 부하 균형된 GPU-클러스터 기반 병렬 볼륨 렌더링)

  • Lee Won-Jong;Park Woo-Chan;Han Tack-Don
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.1-14
    • /
    • 2006
  • Sort-last parallel rendering using a cluster of GPUs has been widely used as an efficient method for visualizing large- scale volume datasets. The performance of this method is constrained by load balancing when data parallelism is included. In previous works static partitioning could lead to self-balance when only task level parallelism is included. In this paper, we present a load balancing scheme that adapts to the characteristic of volume dataset when data parallelism is also employed. We effectively combine the hierarchical data structures (octree and BSP tree) in order to skip empty regions and distribute workload to corresponding rendering nodes. Moreover, we also exploit a 3D clustering method to determine visibility order and save the AGP bandwidths on each rendering node. Experimental results show that our scheme can achieve significant performance gains compared with traditional static load distribution schemes.

Active Learning based on Hierarchical Clustering (계층적 군집화를 이용한 능동적 학습)

  • Woo, Hoyoung;Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.705-712
    • /
    • 2013
  • Active learning aims to improve the performance of a classification model by repeating the process to select the most helpful unlabeled data and include it to the training set through labelling by expert. In this paper, we propose a method for active learning based on hierarchical agglomerative clustering using Ward's linkage. The proposed method is able to construct a training set actively so as to include at least one sample from each cluster and also to reflect the total data distribution by expanding the existing training set. While most of existing active learning methods assume that an initial training set is given, the proposed method is applicable in both cases when an initial training data is given or not given. Experimental results show the superiority of the proposed method.

A Study on the Hierarchical Representation of Images: An Efficient Representation of Quadtrees BF Linear Quadtree (화상의 구조적 표현에 관한 연구- 4진트리의 효율적인 표현법:BF선형 4진트)

  • Kim, Min-Hwan;Han, Sang-Ho;Hwang, Hee-Yeung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.498-509
    • /
    • 1988
  • A BF(breadth-first) linear quadtree as a new data structure for image data is suggested, which enables us to compress the image data efficiently and to make operations of the compressed data easily. It is a list of path names for black nodes as the linear quadtree is. The path name for each black node of a BF linear quadtree is represented as a sequence of path codes from the root node to itself, whereas that of linear quadtree as a sequence of path codes from the root node to itself and fill characters for cut-offed path from it to any n-level node which corresponds to a pixel of an image. The BF linear quadtree provides a more efficent compression ratio than the linear quadtree does, because the former does not require redundant characters, fill characters, for the cut-offed paths. Several operations for image processing can be also implemented on this hierarchical structure efficiently, because it is composed of only the black nodes ad the linear quadtree is . In this paper, algorithms for several operations on the BF linear quadtree are defined and analyzed. Experimental results for forur image data are also given and discussed.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.

Evaluation of Multivariate Stream Data Reduction Techniques (다변량 스트림 데이터 축소 기법 평가)

  • Jung, Hung-Jo;Seo, Sung-Bo;Cheol, Kyung-Joo;Park, Jeong-Seok;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.889-900
    • /
    • 2006
  • Even though sensor networks are different in user requests and data characteristics depending on each application area, the existing researches on stream data transmission problem focus on the performance improvement of their methods rather than considering the original characteristic of stream data. In this paper, we introduce a hierarchical or distributed sensor network architecture and data model, and then evaluate the multivariate data reduction methods suitable for user requirements and data features so as to apply reduction methods alternatively. To assess the relative performance of the proposed multivariate data reduction methods, we used the conventional techniques, such as Wavelet, HCL(Hierarchical Clustering), Sampling and SVD (Singular Value Decomposition) as well as the experimental data sets, such as multivariate time series, synthetic data and robot execution failure data. The experimental results shows that SVD and Sampling method are superior to Wavelet and HCL ia respect to the relative error ratio and execution time. Especially, since relative error ratio of each data reduction method is different according to data characteristic, it shows a good performance using the selective data reduction method for the experimental data set. The findings reported in this paper can serve as a useful guideline for sensor network application design and construction including multivariate stream data.

A Study on the Data-Based Organizational Capabilities by Convergence Capabilities Level of Public Data (공공데이터 융합역량 수준에 따른 데이터 기반 조직 역량의 연구)

  • Jung, Byoungho;Joo, Hyungkun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.97-110
    • /
    • 2022
  • The purpose of this study is to analyze the level of public data convergence capabilities of administrative organizations and to explore important variables in data-based organizational capabilities. The theoretical background was summarized on public data and use activation, joint use, convergence, administrative organization, and convergence constraints. These contents were explained Public Data Act, the Electronic Government Act, and the Data-Based Administrative Act. The research model was set as the data-based organizational capabilities effect by a data-based administrative capability, public data operation capabilities, and public data operation constraints. It was also set whether there is a capabilities difference data-based on an organizational operation by the level of data convergence capabilities. This study analysis was conducted with hierarchical cluster analysis and multiple regression analysis. As the research result, First, hierarchical cluster analysis was classified into three groups. It was classified into a group that uses only public data and structured data, a group that uses public data on both structured and unstructured data, and a group that uses both public and private data. Second, the critical variables of data-based organizational operation capabilities were found in the data-based administrative planning and administrative technology, the supervisory organizations and technical systems by public data convergence, and the data sharing and market transaction constraints. Finally, the essential independent variables on data-based organizational competencies differ by group. This study contributed. As a theoretical implication, this research is updated on management information systems by explaining the Public Data Act, the Electronic Government Act, and the Data-Based Administrative Act. As a practical implication, the activity reinforcement of public data should be promoting the establishment of data standardization and search convenience and elimination of the lukewarm attitudes and Selfishness behavior for data sharing.