• Title/Summary/Keyword: hidden nodes

Search Result 202, Processing Time 0.019 seconds

Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions (활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pureun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

Automatic Recognition of Pitch Accents Using Time-Delay Recurrent Neural Network (시간지연 회귀 신경회로망을 이용한 피치 악센트 인식)

  • Kim, Sung-Suk;Kim, Chul;Lee, Wan-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.112-119
    • /
    • 2004
  • This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network classier with two different representations of dynamic context: delayed input nodes allow the representation of an explicit trajectory F0(t), while recurrent nodes provide long-term context information that can be used to normalize the input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and an HMM (Hidden Markov Model) on the same task. The TDRNN shows the correct recognition of $91.9{\%}\;of\;pitch\;events\;and\;91.0{\%}$ of pitch non-events, for an average accuracy of $91.5{\%}$ over both pitch events and non-events. The MLP with contextual input exhibits $85.8{\%},\;85.5{\%},\;and\;85.6{\%}$ recognition accuracy respectively, while the HMM shows the correct recognition of $36.8{\%}\;of\;pitch\;events\;and\;87.3{\%}$ of pitch non-events, for an average accuracy of $62.2{\%}$ over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the automatic recognition of pitch accents.

Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Link Weight Analysis Approach (연결강도분석접근법에 의한 부도예측용 인공신경망 모형의 입력노드 선정에 관한 연구)

  • 이응규;손동우
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.19-33
    • /
    • 2001
  • Link weight analysis approach is suggested as a heuristic for selection of input nodes in artificial neural network for bankruptcy prediction. That is to analyze each input node\\\\`s link weight-absolute value of link weight between an input node and a hidden node in a well-trained neural network model. Prediction accuracy of three methods in this approach, -weak-linked-neurons elimination method, strong-linked-neurons selection method and integrated link weight model-is compared with that of decision tree and multivariate discrimination analysis. In result, the methods suggested in this study show higher accuracy than decision tree and multivariate discrimination analysis. Especially an integrated model has much higher accuracy than any individual models.

  • PDF

Assessment of Breast Cancer Risk in an Iranian Female Population Using Bayesian Networks with Varying Node Number

  • Rezaianzadeh, Abbas;Sepandi, Mojtaba;Rahimikazerooni, Salar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4913-4916
    • /
    • 2016
  • Objective: As a source of information, medical data can feature hidden relationships. However, the high volume of datasets and complexity of decision-making in medicine introduce difficulties for analysis and interpretation and processing steps may be needed before the data can be used by clinicians in their work. This study focused on the use of Bayesian models with different numbers of nodes to aid clinicians in breast cancer risk estimation. Methods: Bayesian networks (BNs) with a retrospectively collected dataset including mammographic details, risk factor exposure, and clinical findings was assessed for prediction of the probability of breast cancer in individual patients. Area under the receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were used to evaluate discriminative performance. Result: A network incorporating selected features performed better (AUC = 0.94) than that incorporating all the features (AUC = 0.93). The results revealed no significant difference among 3 models regarding performance indices at the 5% significance level. Conclusion: BNs could effectively discriminate malignant from benign abnormalities and accurately predict the risk of breast cancer in individuals. Moreover, the overall performance of the 9-node BN was better, and due to the lower number of nodes it might be more readily be applied in clinical settings.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Load-slip curves of shear connection in composite structures: prediction based on ANNs

  • Guo, Kai;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.493-506
    • /
    • 2020
  • The load-slip relationship of the shear connection is an important parameter in design and analysis of composite structures. In this paper, a load-slip curve prediction method of the shear connection based on the artificial neural networks (ANNs) is proposed. The factors which are significantly related to the structural and deformation performance of the connection are selected, and the shear stiffness of shear connections and the transverse coordinate slip value of the load-slip curve are taken as the input parameters of the network. Load values corresponding to the slip values are used as the output parameter. A twolayer hidden layer network with 15 nodes and 10 nodes is designed. The test data of two different forms of shear connections, the stud shear connection and the perforated shear connection with flange heads, are collected from the previous literatures, and the data of six specimens are selected as the two prediction data sets, while the data of other specimens are used to train the neural networks. Two trained networks are used to predict the load-slip curves of their corresponding prediction data sets, and the ratio method is used to study the proximity between the prediction loads and the test loads. Results show that the load-slip curves predicted by the networks agree well with the test curves.

Certificate Revocation in Connected Vehicles

  • Sami S. Albouq
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • In connected vehicles, drivers are exposed to attacks when they communicate with unauthenticated peers. This occurs when a vehicle relies on outdated information resulting in interactions with vehicles that have expired or revoked certificates claiming to be legitimate nodes. Vehicles must frequently receive or query an updated revoked certificate list to avoid communicating with suspicious vehicles to protect themselves. In this paper, we propose a scheme that works on a highway divided into clusters and managed by roadside units (RSUs) to ensure authenticity and preserve hidden identities of vehicles. The proposed scheme includes four main components each of which plays a major role. In the top hierarchy, we have the authority that is responsible for issuing long-term certificates and managing and controlling all descending intermediate authorities, which cover specific regions (e.g., RSUs) and provide vehicles with short-term pseudonyms certificates to hide their identity and avoid traceability. Every certificate-related operation is recorded in a blockchain storage to ensure integrity and transparency. To regulate communication among nodes, security managers were introduced to enable authorization and access right during communications. Together, these components provide vehicles with an immediately revoked certificate list through RSUs, which are provided with publish/subscribe brokers that enable a controlled messaging infrastructure. We validate our work in a simulated smart highway environment comprising interconnected RSUs to demonstrate our technique's effectiveness.

Classification and prediction of the effects of nutritional intake on diabetes mellitus using artificial neural network sensitivity analysis: 7th Korea National Health and Nutrition Examination Survey

  • Kyungjin Chang;Songmin Yoo;Simyeol Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1255-1266
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.