• Title/Summary/Keyword: hexose

Search Result 93, Processing Time 0.031 seconds

Metabolic Flux Analysis of Beijerinckia indica for PS-7 Production

  • Wu Jian-Rong;Son Jeong Hwa;Seo Hyo-Jin;Kim Ki-Hong;Nam Yoon-Kwon;Lee Jin-Woo;Kim Sung-Koo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • In order to investigate central metabolic changes in Beijerinckia indica, cells were grown on different carbon sources and intracellular flux distributions were studied under varying concentrations of nitrogen. Metabolic fluxes were estimated by combining material balances with extracellular substrate uptake rate, biomass formation rate, and exopolysaccharide (EPS) accumulation rate. Thirty-one metabolic reactions and 30 intracellular metabolites were considered for the flux analysis. The results revealed that most of the carbon source was directed into the Entner-Doudoroff pathway, followed by the recycling of triose-3-phosphate back to Hexose­6-phosphate. The pentose phosphate pathway was operated at a minimal level to supply the precursors for biomass formation. The different metabolic behaviors under varying nitrogen concentrations were observed with flux analysis.

The Regulation of Sugar Metabolism in Huangguan Pears (Pyrus pyrifolia Nakai) with Edible Coatings of Calcium or Pullulan during Cold Storage

  • Kou, Xiaohong;Jiang, Bianling;Zhang, Ying;Wang, Jun;Xue, Zhaohui
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.898-911
    • /
    • 2016
  • Sugars play many important roles in plant metabolism and directly influence fruit quality. The effects of two edible coatings, 2% calcium chloride and 1% pullulan, on sugar metabolism in postharvest Huangguan pear fruit were investigated during cold storage. The respiration rate, sugar content and composition, sucrose metabolism enzyme activities [acid invertase (AIV), neutral invertase (NI), sucrose synthase (SS), and sucrose phosphate synthase (SPS)] and expression of the AIV gene were analyzed during storage at $0^{\circ}C$ for 210 days. Coating treatments slowed the decrease of sucrose and hexose, the respiration rate, and the activities of AIV, NI, SS and SPS, thus maintaining high total soluble solids (TSS) and titratable acid (TA) contents in the fruit. There were no significant differences in AIV expression or activity between the treated and control groups of fruits. Both of the coatings could inhibit the activities of sucrose-cleaving enzymes, thus slowing the decrease of sugar content and maintaining high fruit quality during cold storage.

Bran structure and some properties of waxy rice starches (찹쌀의 겨층 구조 및 전분의 몇가지 성질)

  • Kim, Sung-Kon;Sohn, Jung-Woo
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.105-108
    • /
    • 1990
  • The numbers of aleurone layers and thickness of pericarp of waxy rice in dorsal side were higher than those in vental side, However, varietal characteristics of the bran structures were observed. The water uptake rates of brown rice at $60^{\circ}C$ were similar between $j{\times}indica$ varieties(Hangangchalbyeo, H and Baegunchalbyeo, B) and higer than that of japonica variety (Shinsunchalbyeo, S). Inherent viscosities for H, B and S waxy rice starches were 1.92, 1.84 and 1.73 $dlg^{-1}$, respectively. The minimum moistures for gelatinization of waxy rice starches determined by DSC were $36.4{\sim}38.6%$ which represented 4moles of water per mole of hexose unit.

  • PDF

Characterization of a Paenibacillus woosongensis ${\beta}$-Xylosidase/${\alpha}$-Arabinofuranosidase Produced by Recombinant Escherichia coli

  • Kim, Yeon-A;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1711-1716
    • /
    • 2010
  • A gene encoding the ${\beta}$-xylosidase/${\alpha}$-arabinofuranosidase (XylC) of Paenibacillus woosongensis was cloned into Escherichia coli. This xylC gene consisted of 1,425 nucleotides, encoding a polypeptide of 474 amino acid residues. The deduced amino acid sequence exhibited an 80% similarity with those of both Clostridium stercorarium ${\beta}$-xylosidase/${\alpha}$-N-arabinosidase and Bacillus cellulosilyticus ${\alpha}$-arabinofuranosidase, belonging to the glycosyl hydrolase family 43. The structural gene was subcloned with a C-terminal His-tag into a pET23a(+) expression vector. The His-tagged XylC, purified from a cell-free extract of a recombinant E. coli BL21(DE3) Codon Plus carrying a xylC gene by affinity chromatography, was active on para-nitrophenyl-${\alpha}$-arabinofuranoside (pNPA) as well as para-nitrophenyl-${\beta}$-xylopyranoside (pNPX). However, the enzymatic activities for the substrates were somewhat incongruously influenced by reaction pHs and temperatures. The enzyme was also affected by various chemicals at different levels. SDS (5 mM) inhibited the enzymatic activity for pNPX, while enhancing the enzymatic activity for pNPA. Enzyme activity was also found to be inhibited by addition of pentose or hexose. The Michaelis constant and maximum velocity of the purified enzyme were determined for hydrolysis of pNPX and pNPA, respectively.

Performance and Microbial Characteristics of Bio-hydrogen Production from Food Waste with Thermal Pre-treatment (음식물류 폐기물의 혐기성 수소 발효 시 열처리에 따른 성능 및 미생물 특성 평가)

  • Lee, Chaeyoung;Choi, Jaemin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • This study was conducted to investigate the effect of thermal pre-treatment on bio-hydrogen from food waste. Two continuous reactors operated and VFAs(volatile fatty acids) production and microbial communities were analyzed. The average hydrogen yield was 0.50 and 0.33mol $H_2/mol$ $hexose_{added}$ in thermally treated food added reactor(R1) and control(R2), respectively. Butyrate concentration was similarly 7,500mg/L in both reactors, but two times higher lactate concentration was observed in R2(3,800mg/L). The results of FISH(fluorescence in situ hybridization) showed that the relative microorganism to hydrogen producing bacteria was 78 and 27% in R1 and R2, respectively.

Isolation of Lymphocyte Proliferating Polysaccharide from Mori Cortex Radicis (상백피로부터 분리한 면역세포 증식작용을 지닌 다당체)

  • Kim, Chul-Young;Lee, Eun-Ju;Kim, Hwan-Mook;Huh, Hoon
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.467-471
    • /
    • 1998
  • Numerous efforts have been made to isolate immunologically active component from Mori Cortex Radicis, since it has been used in the treatment of bronchial asthma, and immune dis order in human. Recently, we reported the purification of an anti-allergic component of the Mori Cortex Radicis. Among the fractions we prepared in the previous study, a fraction was active in the proliferation of murine lymphocytes. The active component (HHM 3-1) was elucidated as a polysaccharade with a small amount of lignin. When it was subjected to MALDI-MS by using 3-hydroxypicolinic acid as a matrix, the molecular weight of the component was estimated as 792688.2dalton. Total hexose and protein content of the component were estimated as 62.6% and 0.51%, respectively and it was composed mainly of glucose, galactose and mannose. The remaining part of the component was estimated as ligin because of the characteristic functional groups in IR and UV spectra. Concomitant treatment of HHM 3-1 with known mitogens synergistically increased the proliferation of B-cells and T-cells.

  • PDF

Optimization of Bioelectrochemical Anaerobic Digestion Process Using Response Surface Methodology (반응표면분석법을 활용한 생물전기화학적 혐기성 소화 공정의 최적화)

  • LEE, CHAE-YOUNG;CHOI, JAE-MIN;HAN, SUN-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • This study was performed to optimize the integrated anaerobic digestion (AD) and microbial electrolysis cells (MECs) for the enhanced hydrogen production. The optimum operational conditions of integrated AD and MECs were obtained using response surface methodology. The optimum substrate concentration and operational pH were 10 g/L and 6.8, respectively. In the confirm test, 1.43 mol $H_2/mol$ hexose was achieved, which was 2.5 times higher than only AD. After 40 to 60 hour at seeding, the volatile fatty acids (VFAs) in reactor of AD were not changed. However the VFAs of reactor of AD-MECs were reduced by 61.3% (acetate: 76.4%, butyrate: 50.0%, lactate: 55.0%).

Behavior of Hydrogen and Organic Acids in Anaerobic Digestion of Food Wastewater (음폐수의 혐기성 소화 시 수소 및 유기산의 거동)

  • Cho, Kyungmin;Oh, Saeeun
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • In this study, we used the Flux Balance Analysis (FBA) program to examine the behavior of hydrogen and organic acids according to seasonal changes in food wastewater collected from D city. The results showed that average hydrogen conversion rates in spring, summer, autumn, and winter were 1.06, 0.71, 1.21, and 1.13 mol H2/mol of hexoseadded, respectively, indicating a significantly lower hydrogen conversion rate in summer than in other seasons. This phenomenon is believed to occur because the carbohydrate concentration of the incoming food wastewater is low. In addition, Lactobacillus, the lactic acid-producing bacterium, was 21.3% in spring, 27.2% in summer, 17.5% in autumn, and 22.6% in winter. The most distinctive feature of the microbial community in summer was that 15.3% of the Ilyobacter was analyzed. It was confirmed that Ilyobacter, which is involved in the production of acetic acid and propionic acid, is closely associated with the tendency of increasing acetic acid and propionic acid and thus contributes to organic acid change. Clostridium, a hydrogen-producing bacterium, was 76.2%, 50.8%, 78.3%, and 74%, in spring, summer, autumn, and winter, respectively. It was confirmed that Clostridium dominates the microbial community by approximately 70% or more in all seasons except summer.

Extraction Characteristics of Polysaccharide from Fomitopsis pinicola Jeseng Mushroom (소나무 재생버섯(Fomitopsis pinicola Jeseng) 다당류의 추출 특성)

  • Chang Kyung-Ho;Shin Jin-Gi;Lee Myung-Ye;Lee Sang-Il;Kim Jeong-Sook;Oh Seung-Hee;Kim Soon-Dong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2005
  • This study was conducted to investigate the extraction characteristics of the polysaccharide from Jeseng mushroom (Fomitopsis pinicola Jeseng). Yields of the polysaccharide extracted from powdered mushroom by autoclaving(120, 30 min) with water at different pH and salt concentration were 8.2~9.2% in pH 5~11, 4.7~5.5% in 1~5% salt solution, respectively. The yield by the 0.05~1.0 N KOH-extraction was ranged 3.45~13.20%, while that by HAS-extraction(homogenizing after KOH swelling) using 1~2.5 N KOH 73.6~78.4%. Content of carbohydrate, protein, lipid and ash of the crude polysaccharide extracted from fruits body and its cultured mycelium by method of water extraction, KOH extraction(0.005~1N) and HAS-extraction were ranged 86.5~92.6%, 2.3~13.1%, 0.1~4.2% and 0.1~1.7%, respectively. The polysaccharide were composed of 62.0~77.8 g/g of pentose, 138.0~187.8 g/g of hexose and 21.2~117.3 mg/g of protein. From these results, the polysaccharide extracted was supposed to be a protein-bound polysaccharide.

  • PDF

Ethanol Production with Glucose/Xylose Mixture by Immobilized Pichia stipitis (고정화 Pichia stipitis 를 이용한 글루코오스/자일로오스 혼합당으로부터 에탄올 생산)

  • Shin, Hyun-Seok;Kang, Seong-Woo;Lee, Sang-Jun;Jang, Eun-Ji;Suh, Young-Woong;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • To increase the production of ethanol by using sugar from lignocellulosic biomass, pentose and hexose have to be fermented simultaneously by yeast. The effects of mixed sugar and nitrogen on ethanol production by immobilized Pichia stipitis KCCM 12009 were investigated. When optimal mixed sugar and nitrogen concentration were 5% (Glucose/Xylose = 3:1) and 1%, respectively, ethanol concentration produced by immobilized P. stipitis was 19-20 g/L. In repeated fed-batch by immobilized P. stipitis, all glucose was consumed very quickly at 1-3% mixed sugar concentration. But, xylose consumption was decreased as the mixed sugar concentration increased. Also, ethanol (5.6 g/L) was stably produced and ethanol production rate was 0.13 g/$L{\cdot}h$ in immobilized cell reactor (ICR) with 1% mixed sugar (Glucose/Xylose = 3:1) as feeding media.