• Title/Summary/Keyword: hexeneuronic acid

Search Result 4, Processing Time 0.017 seconds

Impact of hexeneuronic acid to kappa number determination in hardwood chemical pulps (활엽수 화학 펄프내 잔류 hexeneuronic acid가 카파 값에 미치는 영향)

  • Shin, Soo-Jeong;Sung, Yong-Joo;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • Variations in hexeneuronic acid content in hardwood alkaline pulps were investigated to evaluate their contribution to kappa number. Out of diverse chemical pulps the highest hexeneuronic acid content were measured in yellow poplar kraft pulping, which was assumed to enhance ca. 7.0 of kappa number determined by acid permanganate consumption. In yellow poplar soda-anthraquinone pulping, hexeneuornic acid was contributed to increment of 5.0-6.0 kappa number. In eucalyptus alkaline pulping, hexeneuronic acid content was not significantly different from soda-anthraquinone pulping. Increment of Kappa number by hexeneuronic acid was 4.5-5.6 depending on pulping method and pulping time at target temperature.

Impact of hexeneuronic acid on kappa number determination in 3 different bamboo soda-anthraquinone(AQ) pulps (대나무류 3종 소다-안트라퀴논 펄프 내 존재하는 hexeneuronic acid가 카파 값에 미치는 영향)

  • Song, Woo-Yong;Lee, Kyu-Seong;Lee, Suk-Gyeong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.73-79
    • /
    • 2016
  • Hexeneuronic acid in soda-anthraquinone(AQ) pulps from Moso bamboo(Phyllostachys pubescebs), Timber bamboo(Phyllostachys bambusoides) and Henon bamboo(Phyllostachys nigra var. henonis) was investigated with mercuric chloride hydrolysis and UV spectroscopic quantification. Concentration of hexeneuronic acid in bamboo pulps was $36.6-45.4{\mu}mol/g$, which contributed to 3.1-3.9 value increase of kappa number. Lower concentration of 4-O-methylglucuronic acid in bamboo xylan contributed to lower hexeneruonic acid content in bamboo pulps than those of hardwood(yellow poplar or eucalyptus) but higher than softwood(red pine).

Impact of Lignin Determination Method on Oxygen Delignification Chemistry

  • Shin Soo-Jeong;Lai Yuan-Zong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.50-55
    • /
    • 2005
  • In previous report, we investigated the impact of hexeneuronic acid and some residual extractiveson lignin determination. These non-lignin components severely interfered lignin content determination which also affect on the oxygen delignification comparison between aspen and pine unbleached kraft pulps. Very different pattern was observed whether based on uncorrected conventional kappa number or based on corrected kappa number in oxygen delignification comparison. Lower kappa number aspen pulps showed poor response to oxygen delignification when kappa number was used as lignin determination method but better response with using the acid lignin method. Phenolic hydroxyl group in kraft pulps were also compared based on uncorrected or corrected kappa numberfor lignin content. Based on uncorrected kappa number, lower kappa number oxygen-delignified pulps had lower phenolic hydroxyl group. However, lower kappa number oxygen-delignified pulps showed much higher phenolic hydroxyl group based on the corrected lignin content. For accurate comparison for residual lignin properties from different pulps, lignin determination should be corrected from non-lignin components contribution to lignin.

Impact of Residual Extractives and Hexenuronic Acid on Lignin Determination of Kraft pulps

  • Shin Soo Jeong;Schroeder Leland R;Lai Yuan Zong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.62-68
    • /
    • 2004
  • The amount of non-lignin components in unbleached and oxygen-delignified kraft pulps and their impact on lignin determinations was investigated. The lignin analyses investigated were kappa number and Klason lignin in conjunction with acid-soluble lignin. The species investigated were loblolly pine, and aspen. The non-lignin components that impacted on lignin determination were residual extractives and hexenuronic acid in unbleached and oxygen-delignified kraft pulps. In the hardwoods, significant amounts of extractives remained after kraft pulping and oxygen delignification. These residual extractives in the hardwood pulps had an impact on the lignin determination, more so on the acid lignin method than kappa number. Hexenuronic acid only impacts on kappa number determination both softwood and hardwood pulps, not on acid lignin. Hexeneuronic acid contributed as lignin content more in aspen than pine pulps, and more in oxygen-delignified than unbleached kraft pulps. Impact of hexenuronic acid on should be corrected both softwood and hardwood pulps for accurate kappa number.