• Title/Summary/Keyword: hexagonal diagram

Search Result 10, Processing Time 0.024 seconds

Image Analysis Algorithm for the Corneal Endothelium

  • Kim Young-Yoon;Kim Beop-Min;Park Hwa-Joon;Im Kang-Bin;Lee Jin-Su;Kim Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.125-130
    • /
    • 2006
  • The number of the living endothelial cells and the shape of those are very import clinical parameters for the evaluation of the quality of cornea. In this paper, we developed the automated endothelial cell counting and shape analysis algorithm for a confocal microscope. Since, the endothelial images from the confocal microscope has a non-uniform illumination and low contrast between cell boundaries and cell bodies, it is very difficult to segment the cells from the endothelial images. To cope with these difficulties, we proposed the new two stage image processing algorithm. At first stage algorithm, we used a high-pass filter and histogram equalization to compensate the non-uniform brightness pattern and a morphological filter and a watershed method are applied to detect the boundary of cells. From this stage, we could count the number of cells in an endothelial image. At second stage algorithm, we used a Voronoi diagram method to classify the shape of cells. This cell shape analysis and the percent of hexagonal cells are very sensitive in detecting the early endothelium damage. To evaluate the performance of the proposed system, we p개cessed seven endothelial images obtained using a confocal microscope. The proposed system correctly counted 95.5% cells and classified 92.0% of hexagonal cell shapes. This result is better than any others in this research area.

Phase Decomposition and Strength of B2-Ordered (Ni,Co)Al (B2형 규칙(Ni,Co)Al의 상분리와 강도)

  • Han, Chang-Suck;Kim, Youn-Che
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-90
    • /
    • 1996
  • Transmission electron microscopy(TEM) investigation on the phase decomposition of B2-ordered (Ni,Co)Al supersaturated with Ni and Co has revealed the precipitation of $(Ni,Co)_2Al$ which has not been expected from the reported equilibrium phase diagram. The $(Ni,Co)_2Al$ phase has a hexagonal struture and takes a rod-like shape with the long axis of the rod parallel to the <111> directions of the B2 matrix. By aging at temperatures below 873 K, a long period Superlattice Structure appears in the hexagonal $(Ni,Co)_2Al$ Phase. The orientation relationship between the $(Ni,Co)_2Al$ Precipitates and the B2-(Ni,Co)Al matrix is found to be$(0001)_p$ // $(111)_{B2}$ and $[\bar{1}2\bar{1}0]_P$ // $[\bar{1}10]_{B2}$, Where the suffix p and B2 denote the $(Ni,Co)_2Al$ precipitate and the B2-(Ni,Co)Al matrix, respectively. (Ni,Co)Al hardens appreciably by the fine precipitation of the $(Ni,Co)_2Al$ phase. Energy dispersive spectroscopy was used to analyze the compositions of each phase formed in B2-(Ni,Co)Al.

  • PDF

Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method (전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석)

  • Lee, Ji-Hoon;Baik, Young-Nam;Kim, Young-Seok;Shin, Seung-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Effects of Urban Compactness and Residential Density on Trip Generation: Focusing on Work Trips in Seoul, Korea (도시 압축도와 주거밀도가 통행발생에 미치는 영향에 관한 연구: 서울시 출근 통행을 중심으로)

  • Mahriyar, Muhammad. Zia;RHO, Jeonghyun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The compact city usually provides good accessibility of residents with multiple transportation modes. However, in a compact city, annual average of travel distance per household by car is relatively short due to more congested traffic condition and larger travel cost than disperse city. As a result, total travel demand is decreasing when the region becomes more compact. Therefore compact development is regarded as one of the sustainable choices for future urban planning in many countries. This study aims at an empirical analysis of the relationship between urban compactness and travel demand based upon land-use and travel data for city of Seoul. In this study, 424 sub-districts with the mixed land-use patterns are assessed in a hexagonal diagram. The measurement is based on the relative deviation of each sector's characteristics including numbers of residence, manufacture, and trade & service. Multiple linear regression models are developed to analyze the effects of urban compactness on zonal trip generations. As a result, the trip generation rate in the residence-intensive and mixed-use areas is found to be relatively low. Furthermore, residents in high-compact areas tend to use public transport more often than residents in less compact areas.

Self Assembly and Formation of Bi-continuous Cubic Liquid Crystalline Phase (바이컨티니어스 큐빅상 액정의 생성과 자기조직화)

  • Kim, In-Young;Choi, Hwa-Sook;Lee, So-Ra;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.478-485
    • /
    • 2014
  • This study is to form the self assembly of cubic crystalline phase to penetrate into the skin epidermis. The various performance synthesized diglyceryl phytylacetate (DGPA) having hydroxyl group (-OH) and 4 methyl chains with phytyl group was carried out as an amphoteric lipid such as emulsifying power, self assembly. Emulsifying activity of DGPA was very stabilized on only 1% of small content, it could make a W/O emulsion containing high internal phase incorporated with water. Cubic liquid crystal structure with DGPA on three-phase diagram was formed, when mixed DGPA, dimethicone (2CS), and water. Through three-phase diagram forming the cubic liquid crystal area, hexagonal structure zone, and mixing water phase and hexagonal structure area, reversed micelle area were respectively certified. Its structure was proved by the SAXS (small angled x-ray scattering) analysis. As an application, formation of cubosome containing 10% of magnesium ascorbylphosphate and 5% of pyridoxine tris-hexyldecanoate was encapsulated. Occlusive effect of cubosome had above 1.7 times better than reversed micelle. From using poloxamer of dispersing agent, phase structure recovered from W/O emulsion to cubic liquid crystal phase when storage in $33^{\circ}C$ incubator. Therefore, our this study is expected to be as epidermal-dermal skin absorbers in skin care cosmetics and pharmaceuticals industries as raw materials to form a cubic crystal phase through a more in-depth research to DGPA having amphoteric lipid property.

Study on the Gelling Formation and Anti-gelling Properties of Liquid Detergent Based on Sodium Lauryl Ethoxy Sulfate (SLES) (소듐 라우릴 에톡시 설페이트(SLES) 베이스 액체세정제의 겔링성 및 겔링방지 특성에 대한 연구)

  • Chi, Gyeong-Yup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.620-625
    • /
    • 2018
  • Liquid detergent based on sodium lauryl ethoxy sulfate (SLES) as main ingredient sometimes met gelling film on the surface when it is opened in the air. It was assumed because of the change of phase diagram of micelle by concentration change of surfactant, major ingredient of detergent when the water of detergent is evaporated. SLES showed strong hexagonal liquid crystal (LC) in 30~60 wt%, and lamellar LC over 60 wt%. In this research surface gelling formation of liquid detergent which is based on SLES as main ingredient was because of water evaporation. As water of detergent was evaporated, concentration of surfactant became higher. It was checked that surface gelling was LC of mixed surfactant system. Conclusionally we applied alpha olefin sulfonate (AOS) having good solubility, Sodium secondary alkane sulfonate (SAS) preventing hexagonal LC and hydrotrope sodium xylene sulfonate (SXS) and PEG1500 in order to prevent gelling film in SLES based liquid detergent. Like this, improved formula 4 and 5 can prevent the formation of gelling film on the surface of liquid detergent when it is opened in the air.

Investigations of the Phase Behavior of N-dodecanocyl-N-methyl amido polyol carboxyl alkyl ether/N-dodecanocyl-N-alkyl Glucamine/Water System (N-도데카노실-N-메틸 아미도 폴리올 카르복시 알킬 에테르/(N-도데카노실-N-알킬 글루카민)/물계에서의 상거동 관찰)

  • Kang, Yun-Seog;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.23-28
    • /
    • 1997
  • The phase diagram for the surfactant mixture system of N-dodecanocyl-N-methyl amido polyolcarboxyl alkyl ether(DGC)/N-dodecanocyl-N-alkyl glucamine(DG)/water was studied usingpolarized microscopy, differential scanning calorimetry(DSC) and rheological measurements respectively. Using polarized microscopy, the textures of liquid crystal phases obtained at various surfactantconcentrations were investigated as a function of surfactant concentration and temperature, and phasetransitions between anisotropic liquid crystal phases and isotropic liquid phase were examined usingDSC measurements. Viscoelastic properties of surfactant solutions determined between hexagonal andlamellar liquid crystal phase by rheological measurements were approximately consistent with the resultsobtained by polarized microscopy and DSC. In the study for the phase of DGC/DG(5:5 mol ratio)/water system. It could be found that the hexagonal liquid crystal phase appeared at 25${\sim}$60wt% ofsurfactant, the cubic liquid crystal phase at 50${\sim}$65wt% and the lamellar crystal phase at above 70wt%.

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.