• 제목/요약/키워드: heterotrophs

검색결과 37건 처리시간 0.025초

강우지속시간에 따른 건물지붕빗물의 성상특성변화에 대한 기초 연구 (The Basic Study for the Roof-Harvested Rainwater Quality Characteristics as a Function of Rainfall Duration)

  • 김성표;김두철;오준식;김이형;민경석
    • 한국습지학회지
    • /
    • 제14권1호
    • /
    • pp.11-20
    • /
    • 2012
  • 본 연구의 목적은 더 나은 빗물관리를 위해 건물지붕에서 흘러내리는 빗물의 성상을 분석하고, 그 자료를 축적하는데 있다. 이에 빗물 유출수 성상을 분석한 결과(pH, COD, TSS, T-N, T-P, $NH_4$-N, $NO_3$-N, 장내세균, 일반미생물, 납, 카드뮴, 구리)지붕 유출수에서 흘러나오는 빗물의 성상이 직접 받은 빗물에 비해 약 2 ~ 3배 가량 더 오염되었고 (미생물 지수의 경우는 100배 이상) 초기 10분 동안 내린 오염물질량이 30분 모니터링한 빗물 오염물질량의 60% 이상 차지하고 있음을 알 수 있었다. 또한, 통계 요인분석을 통해 빗물 유출수 분석 항목들을 상대적으로 가까운 지표(변수)들로 구분 지을 수 있었다. 본 연구진은 이러한 지속적인 건물지붕빗물의 모니터링이 국내의 안전하고 경제적인 빗물 저장시설을 설치하는데 도움을 줄 거라 예상한다.

신경회로망을 이용한 순환식 돈분폐수 처리시스템의 모니터링

  • 최정혜;손준일;양현숙;정영륜;이민호;고성철
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.125-128
    • /
    • 2000
  • 본 연구에서는 순환식 돈분 폐수 처리 시스템에서의 미생물 분포에 따른 폐수 처리 효과를 모델링하기 위해 신경회로망과 PCA를 이용하는 새로운 방법을 제안하였다. PCA 분석 결과를 바탕으로 신경회로망의 최적 입력 조건을 찾고, 실측 데이터를 이용하여, 폐수 처리 시스템의 각 탱크를 별도로 학습함으로써 비교적 적은 수의 데이터에도 불구하고 정확한 모델링 결과를 얻었다. 제안한 시스템은 폐수 처리 시스템의 효과적인모니터링 시스템으로 사용할 수 있으며, 향후 실제 돈분 처리 시스템에서 원하는 기준의 방류수를 얻기 위한 최적의 입력조건 (미생물밀도 등)을 결정하는데 있어서 에뮬레이터로 사용될 수 있을 것으로 기대된다.

  • PDF

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • 제31권3호
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

활성슬러지 모델을 이용한 A2O공법 영양염류 제거 및 미생물 거동 (Nutrients removal and microbial activity for A2O Process Using Activated Sludge Models)

  • 윤현식;김덕진;최봉호;김문일
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.889-896
    • /
    • 2012
  • In this study, simulation results of nitrogen and phosphorus removals and microbial activities for an $A_2O$ process in wastewater treatment plant are presented by using Activated Sludge Models (ASMs). Simulations were performed using pre-calibrated model and layout implemented in GPS-X simulation software. The models were used to investigate variations of SRT, water temperature, DO and C/N ratio effect on nutrients removal and microbial activity. According to the simulated results, the successful nitrification required SRT higher than 10.3 days, whereas increase of $NO_3$-N loading in the anaerobic reactor caused phosphorus release by PAOs; the effluent $NH_4$-N showed rapid change between $12^{\circ}C$(21.7 mg/L) and $13^{\circ}C$(3.2 mg/L); the effluent phosphorus was increased up to 1.9 mg/L at water temperature of $25^{\circ}C$; the DO increase was positive for heterotrophs and autotrophs growths but negative for PAOs growth; the PAOs showed low activity when C/N ratio was lower than 2.5. The experimental results indicated that the calibrated models can assure the prediction quality of the ASMs and can be used to optimize the $A_2O$ process.

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권5호
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Report of 22 unrecorded bacterial species in Korea belonging to phylum Bacteroidetes, discovered during surveys in 2018

  • Kim, Min Ji;Kim, Yeong Seok;Cha, Chang-Jun;Im, Wan-Taek;Jeon, Che Ok;Joh, Kiseong;Seong, Chi Nam;Yi, Hana;Kim, Seung Bum
    • Journal of Species Research
    • /
    • 제9권1호
    • /
    • pp.26-34
    • /
    • 2020
  • The phylum Bacteroidetes covers phenotypically diverse groups of Gram negative rods that do not form endospores, and currently includes 6 classes, 6 orders, 33 families and 380 genera. Members of Bacteroidetes can be aerobic and anaerobic heterotrophs, hydrogen utilizing chemolithotrophs, or methylotrophs. They can be isolated from diverse habitats including terrestrial and aquatic environments, environments with extreme physicochemical conditions, and animal and plant hosts. During a series of extensive surveys of prokaryotic species diversity in Korea, bacterial strains belonging to Bacteroidetes were isolated from various sources of aquatic and terrestrial environments. A total of 22 isolates were obtained, which represent 22 unrecorded species in Korea belonging to 14 genera of 6 families. Sixteen species among them were assigned to Flavobacteriaceae, two species were to Sphingobacteriaceae, and single species was to each of the families Bacteroidaceae, Balneolaceae, Chitinophagaceae and Cytophagaceae. At genus level, Chryseobacterium (5 species) and Flavobacterium (5 species) were the most abundant genera, and single species were obtained for the genera Bacteroides, Baloneola, Terrimonas, Dyadobacter, Aquimarina, Arenibacter, Gillisia, Gilvibacter, Salinimicrobium, Winogradskyella, Pedobacter and Sphingobacterium. The detailed descriptions of each unrecorded species are provided.

SBR을 이용한 하수와 우사폐수로 구성된 혼합폐수의 영양소 제거 (The Nutrient Removal of Mixed Wastewater composed of Sewage and Stable Wastewater using SBR)

  • 김홍태
    • 한국환경과학회지
    • /
    • 제8권5호
    • /
    • pp.617-623
    • /
    • 1999
  • This study was carried out to obtain the optimal operating parameter on organic matters and nutrient removal of mixed wastewater which was composed of sewage and stable wastewater using SBR. A laboratory scale SBR was operated with An/Ae(Anaerobic/Aerobic) ratio of 3/3, 2/4 and 4/2(3.5/2.5) at organic loading rate of 0.14 to 0.27 kgBOD/$m^3$/d. TCOD/SCOD ratio of mixed wastewater was 3, so the important operating factor depended upon the resolving the particulate parts of wastewater. Conclusions of this study were as follows: 1) For mixed wastewater, BOD and COD removal efficiencies were 93-96% and 85-89%, respectively. It was not related to each organic loading rate, whereas depended on An/Ae ratio. During Anarobic period, the amount of SCOD consumption was very little, because ICOD in influent was converted to SCOD by hydrolysis of insoluble matter. 2) T-N removal efficiencies of mixed wastewater were 55-62% for Exp. 1, 66-76% for Exp. 2, and 67-81% for Exp. 3, respectively. It was found that nitrification rate was increased according to organic concentration in influent increased. Therefore, the nitrification rate seemed to be achieved by heterotrophs. During anoxic period, denitrification rate depended on SCOD concentration in aerobic period and thus, was not resulted by endogenous denitrification. However, the amount of denitrification during anaerobic period were 3.5-14.1 mg/cycle, and that of BOD consumed were 10-40 mg/cycle. 3) For P removal of mixed wastewater, EBPR appeared only Mode 3($3^*$). It was found that the time in which ICOD was converted to VFA should be sufficient. For mode 3 in each Exp., P removal efficiencies were 74, 87, and 81%, respectively. But for 45-48 of COD/TP ratio in influent, P concentration in effluent was over 1 mg/L. It was caused to a large amount of ICOD in influent. However, as P concnetration in influent was increased, the amounts of P release and uptake were increased linearly.

  • PDF

O2/Ar 관측에 기반한 순군집생산량 추정 연구 동향 (Estimation of Net Community Production Based on O2/Ar Measurements)

  • 함도식;이인희
    • 한국해양학회지:바다
    • /
    • 제23권1호
    • /
    • pp.49-62
    • /
    • 2018
  • 순일차생산량과 종속 영양 생물의 호흡량의 차이로 정의되는 순군집생산량(net community production; NCP)은 해양 생물펌프의 척도로 활용되고 있다. 이 논문에서 소개하는 $O_2/Ar$ 관측에 기반한 NCP 추정법($O_2/Ar-NCP$)은 연구선의 이동 중에도 1분 미만의 고빈도로 $O_2/Ar$를 연속적으로 측정할 수 있어, 신생산량 혹은 방출생산량 등 전통적인 생물펌프 척도가 갖는 시간 혹은 공간 해상도의 제한을 혁신적으로 개선한 것이다. 논문에서는 $O_2/Ar-NCP$ 방법의 이론적 배경과 실험 장치의 구성에 대해 설명하였다. 또한 기존 생물펌프 척도와 $O_2/Ar-NCP$의 비교, 대양의 해역별 NCP 분포, 현장 관측 결과와 기계학습을 결합한 전 대양 NCP의 추정, 식물 플랑크톤 군집 구조와 NCP 연관성 등에 관한 주요 연구 사례들을 소개하였다.

Holocarpic oomycete parasites of red algae are not Olpidiopsis, but neither are they all Pontisma or Sirolpidium (Oomycota)

  • Giuseppe C. Zuccarello;Claire M. M. Gachon;Yacine Badis;Pedro Murua;Andrea Garvetto;Gwang Hoon Kim
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.43-50
    • /
    • 2024
  • Oomycetes are ubiquitous heterotrophs of considerable economic and ecological importance. Lately their diversity in marine environments has been shown to be greatly underappreciated and many lineages of intracellular holocarpic parasites, infecting micro- and macro-algae, remain to be fully described taxonomically. Among them, pathogens of marine red algae have been studied extensively as they infect important seaweed crops. Throughout the 20th century, most intracellular, holocarpic biotrophic oomycetes that infect red algae have been assigned to the genus Olpidiopsis Cornu. However, 18S rRNA sequencing of Olpidiopsis saprolegniae, the species considered the generitype for Olpidiopsis, suggests that this genus is not closely related to the marine pathogens and that the latter requires a nomenclatural update. Here, we compile and reanalyze all recently published 18S rRNA sequence data for marine holocarpic oomycetes, with a particular focus on holocarpic pathogens of red algae. Their taxonomy has been revised twice over the past four years, with suggestions to transfer them first into the genus Pontisma and then Sirolpidium, and into a monogeneric order, Pontismatales. We show however, that previously published topologies and the proposed taxa Pontisma, Sirolpidium, and Pontismatales are unsupported. We highlight that name changes that are unfounded and premature create confusion in interested parties, especially concerning pathogens of marine red algae that infect important seaweed crops. We thus propose that the names of these holocarpic biotrophic parasites of red algae are retained temporarily, until a supported topology is produced with more genetic markers to enable the circumscription of species and higher-level taxa.