• Title/Summary/Keyword: heterotrophic denitrification

Search Result 32, Processing Time 0.019 seconds

현장 Single Well Push-Pull 실험을 통한 탈질산화반응 각 단계의 반응속도 측정

  • Yeong, Kim;Jin Hun, Kim;Bong Ho, Son;Seong Uk, Eo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • Quantifying rates of microbial processes under subsurface conditions is difficult, and is most commonly approximated by laboratory studies using aquifer materials. In this study a single-well, 'push-pull' test method is adapted for the in situ determination of denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests at an experimental well field of Korea University. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifyinc microorganisms. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate '||'&'||'gt; nitrite '||'&'||'gt; nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibi1ity assessments for in situ denitrification in nitrate-contaminated aquifers.

  • PDF

Influence of Aeration Cycle on Nitrogen and Phosphorus Removal in Two-Stage Intermittent Aeration System (2단 간헐폭기 시스템에서 aeration cycle이 질소 및 인 제거에 미치는 영향)

  • Jeong, Myoung-Sun;Lee, Jun-Ho;Seo, Kwang-Bum;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.193-197
    • /
    • 2003
  • This bench-scale research investigated the aeration cycle(on/off) as the controlling factors for nitrogen and phosphorus removal in a 2-stage, intermittent aeration process. At this experiment, the aeration cycle time(air-on/air-off) was 30min/30min, 60min/60min, 90min/90min. Organic matter removal was observed more than 90% regardless of the aeration cycle and phosphorus removal was relatively high when the aeration cycle time was 60min/60min On the other hand. For all of the aeration cycle, TN removal was appeared less than 55%. This result was probably due to the limitation of the external substrate for heterotrophic nitrification and aerobic denitrification.

  • PDF

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate (액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구)

  • Lee, Kyuyeon;Lee, Byung Sun;Shin, Doyun;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.654-659
    • /
    • 2013
  • This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

Heterotrophic nitrification-aerobic denitrification potential of cyanide and thiocyanate degrading microbial communities under cyanogenic conditions

  • Mekuto, Lukhanyo;Kim, Young Mo;Ntwampe, Seteno K.O.;Mewa-Ngongang, Maxwell;Mudumbi, John Baptist N.;Dlangamandla, Nkosikho;Itoba-Tombo, Elie Fereche;Akinpelu, E.A.
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.254-262
    • /
    • 2019
  • The impact of free cyanide ($CN^-$) and thiocyanate ($SCN^-$) on the $CN^-$ (CDO) and $SCN^-$ degraders (TDO) to nitrify and denitrify aerobically was evaluated under alkaline conditions. The CDO's were able to nitrify under cyanogenic conditions, achieving $NH_4{^+}-N$ removal rates above 1.66 mg $NH_4{^+}-N.L^{-1}.h^{-1}$, except when $CN^-$ and $SCN^-$ loading was 15 mg $CN^-/L$ and 50 mg $SCN^-.L^{-1}$, respectively, which slightly inhibited nitrification. The TDO's were able to achieve a nitrification rate of 1.59 mg $NH_4{^+}-N.L^{-1}.h^{-1}$ in the absence of both $CN^-$ and $SCN^-$, while the presence of $CN^-$ and $SCN^-$ was inhibitory, with a nitrification rates of 1.14 mg $NH_4{^+}-N.L^{-1}.h^{-1}$. The CDO's and TDO's were able to denitrify aerobically, with the CDO's obtaining $NO_3{^-}-N$ removal rates above 0.67 mg $NO_3{^-}-N.L^{-1}.h^{-1}$, irrespective of the tested $CN^-$ and $SCN^-$ concentration range. Denitrification by the TDO's was inhibited by $CN^-$, achieving a removal rate of 0.46 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ and 0.22 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ when $CN^-$ concentration was 10 and 15 mg $CN^-.L^{-1}$, respectively. However, when the CDO's and TDO's were co-cultured, the nitrification and aerobic denitrification removal rates were 1.78 mg $NH_4{^+}-N.L^{-1}.h^{-1}$ and 0.63 mg $NO_3{^-}-N.L^{-1}.h^{-1}$ irrespective of $CN^-$ and $SCN^-$ concentrations.

Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates (Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용)

  • Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

Nitrogen Removal in Flat-Panel Air-Cathode Microbial Fuel Cell according to Various Inoculum Sources and Organic Concentration (식종원 및 유기물 농도 변화에 따른 평판형 외기환원전극 미생물 연료전지의 질소 제거)

  • Park, Younghyun;Yu, Jaecheul;Nguyen, Thi Hien;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.635-640
    • /
    • 2016
  • Although microbial fuel cell (MFC) can produce electricity from organics in wastewater, nitrogen removal is required for application of process for wastewater treatment plant. This study developed flat-panel air-cathode MFCs (FA-MFCs) comprised of two large separator electrode assemblies (SEAs) and evaluate total nitrogen removal according to three inoculum sources and pre-nitrification acclimation. The nitrification efficiencies were >99% regardless of inoculum sources under the phase for pre-nitrification acclimation. The total nitrogen removal efficiencies of FA-MFCs without pre-nitrification acclimation were the highest at the low organic conditions (<300 mg-COD/L) under the phase for nitrification and denitrification. The increase of organic concentration influenced the total nitrogen removal efficiency, positively. The organics were removed >95% but were not used for heterotrophic denitrification totally. This study suggests that application of FA-MFC system for wastewater treatment can allow the simultaneous removal of organic and nitrogen compounds, although this affects the low electricity production.

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF

Evaluation of Design and Operation Parameters for a Spherical Sulfur Denitrification Reactor Treating High Strength Municipal Wastewater (고농도 도시하수 처리를 위한 입상황 탈질 반응조의 설계 및 운영인자 평가)

  • Kim, Yong-Hak;Chae, Kyu-Jung;Yim, Seong-Keun;Lee, Young-Man;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1087-1093
    • /
    • 2010
  • Autotrophic denitrification is known as an effective and economical alternative for heterotrophic denitrification using external carbon sources such as methanol. In this study, we evaluated design and operation parameters for a sulfur denitrification reactor (SDR) treating high strength nitrogen wastewater. The SDR was filled with spherical sulfur media in connected to a pilot-scale nutrient removal process (daily flow rate, $Q=18\;m^3/d$) using moving spongy media. Total nitrogen (TN) concentration of the final effluent was below the 7.0 mg TN/L because nitrate was additionally removed through autotrophic denitrificationin without adding alkalinity (initial alkalinity was $169.4{\pm}20.8\;mg$ $CaCO_3$/L). During the test period, 60~80% of nitrogen in the influent was removed even in low temperature (below $15^{\circ}C$). The alkalinity consumption for nitrate removal in SDR was $4.09{\pm}1.29$ g $CaCO_3/g$ ${NO_3}^-$-N, and the residual alkalinity of influent of SDR was higher than that of theoretical requirements for full conversion of nitrate. The consumption of sulfur was 943.8 g S/d and it was 2.4 times higher than theoretical value (400.1 g S/d) due to abrasion and loss of sulfur media in backwash, etc.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Microbial Adaptation in a Nitrate Removal Column Reactor Using Sulfur-Based Autotrophic Denitrification (질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구)

  • Shin, Do-Yun;Moon, Hee-Sun;Kim, Jae-Young;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • Two sulfur-based column reactors inoculated with a bacterial consortium containing autotrophic denitrifiers were operated for 100 and 500 days, respectively and nitrate removal efficiency and the adaptation of microbial communities in the columns were monitored with column depths and time. For better understanding the adaptation phenomenon, molecular techniques including 16S rDNA sequencing and DGGE analysis were employed. Although both columns showed about 99% of nitrate removal efficiency heterotrophic denitrifiers such as Cenibacterium arsenioxidans and Geothrix fermentans were found to a significant portion at the initial stage of the 100-day reactor operation. However, as operation time increased, an autotrophic denitrifier Thiobacillus denitrificans became a dominant bacterial species throughout the column. A similar trend was also observed in the 500-day column. In addition, nitrate removal efficiencies were different with column depths and thus bacterial species with different metabolic activities were found at the corresponding depths. Especially, T. denitrificans was successfully adapted and colonized at the bottom parts of the columns where most nitrate was reduced.