• Title/Summary/Keyword: heteropoly acid ($H_3PW_{12}O_{40}$)

Search Result 4, Processing Time 0.015 seconds

Simple Heteropoly Acids as Water-Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach (34% 과산화 수소와 함께 알코올의 산화에서 수분-관용적인 촉매로서의 간단한 헤테로 다중산)

  • Tayebee, Reza
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Simple Keggin type tungsten and molybdenum heteropoly acids, H3PW12O40 and H3PMo12O40, were usedas water-tolerant catalysts for the oxidation of alcohols with 34% hydrogen peroxide in normal drinking water. Accordingto our findings, H3PW12O40 may be used as a simple, effective, and cheap catalyst for this type of transformation in nor-mal drinking water with excelent yields. Efects of diferent solvents at 25-80oC and changing concentration of catalystand substrate on the reaction progress were also studied.

Alkylation of Isobutane with 1-Butene over Heteropoly Acid Catalysts (헤테로폴리산 촉매상에서 1-부텐에 의한 i-부탄의 알킬화반응)

  • Hong, Sung Hee;Lee, Wha Young;Song, In Kyu
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1997
  • Liquid or gas phase alkylation of isobutane with 1-butene for i-octane production was carried out over Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$. Pretreatment temperature of the catalyst played an important role on the catalytic activity of heteropoly acids in the liquid phase alkylation. Cation-exchanged $H_3PW_{12}O_{40}$ showed a better total yield and i-octane selectivity than the mother acid in the liquid phase alkylation, and $(NH_4)_{2.5}H_{0.5}PW_{12}O_{40}$ was more efficient than $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ in terms of i-octane selectivity. It was found that the acidic property (deactivation of acid sites) of the catalyst was closely related to the catalytic activity of Cs- or $NH_4$-exchanged $H_3PW_{12}O_{40}$ in the gas phase alkylation. $C_5-C_7$ were mainly formed in the early stage of gas phase alkylation due to the strong acidic property of the catalyst, whereas $C_8$ and $+C_9$ were mainly produced as the reaction proceeded due to the deactivation of acid sites. $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ showed the highest total yield in the gas phase alkylation among the catalysts examined.

  • PDF

Property and Catalytic Activity of Heteropoly Acid Supported on MCM-41, 48 Mesoporous Material and SiO2 (MCM-41, 48 메조포러스 물질 및 SiO2에 담지한 헤테로폴리산의 특성 및 촉매적 활성)

  • Park, Jung-Woo;Kim, Beom-Sik;Lee, Jung-Min;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1020-1027
    • /
    • 1999
  • Heteropoly acid(HPW) catalysts supported on three different carriers, an amorphous silica, MCM-41 and MCM-48, with different loadings and calcination temperatures have been prepared and characterized by X-ray diffraction, nitrogen physorption, infrared spectroscopy, and $^{31}P$ magic angle spinning NMR. From the result of IR and NMR, it was shown that HPW retains the Keggin structure on the supported catalysts. No HPW crystal phase was developed even at HPW loadings as high as 35 wt % on the MCM-41 and 65 wt % MCM-48. Thus, HPW appeared to form finely dispersed species. In the hydrolysis reaction of di, bis, tri-pentaerythritol, HPW/MCM-41, 48 exhibited higher catalytic activity than $HPW/SiO_2$ or HPW.

  • PDF

Simulation for Membrane Reactor using Heteropoly Acid Catalyst (헤테로폴리산 촉매를 이용한 고분자막반응기 모사)

  • 최준선;김용헌;이화영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.53-60
    • /
    • 1997
  • 1. 서론 : 촉매막기술은 반응과 분리공정을 동시에 하나의 장치에서 수행할 수 있기 때문에 한 개의 공정을 줄일 수 있는 효과적인 에너지 절약형 기술이다. 생성물중의 적어도 하나가 선택적으로 막을 통해 투과되기 때문에 가역반응의 경우에는 비가역반응에 가까운 거동을 보이게 된다[1-5]. 본 연구는 12-텅스토인산($H_3PW_{12}O_{40}$)를 촉매로 사용하고 막반응시를 비활성촉매막반응기(IMRCF, Inert membrane reactor with catalyst in the feed side)형태, 막으로는 PSF(Polysulfone), PPO(Polyphenylene Oxide)를 사용하여 MTBE(Methyl tert-butyl ether)분해반응을 모사하였다. 막반응기에서 생성된 생성물을 선택적으로 분리해냄으로 인하여 전환율은 고정층보다 증가하였는데 반응온도가 증가할수록, 반응물의 분압은 낮을수록 증가하였다. 반응온도가 높아짐에 따라 막반응기에서의 전환율은 고정층반응에서 나타나는 전환율과의 차이가 줄어드는 것을 볼 수 있었다. 위와같은 결과에 따라서 MTBE 반응물의 분해로 생성되는Isobutene의 수율이 90$\circ$C 이상의 반응온도에서 촉매/반응물비에 대한 최적조건이 나타나는 것을 알 수 있었다.

  • PDF