• Title/Summary/Keyword: heterogeneous nodes

Search Result 144, Processing Time 0.021 seconds

A Multi-Class Task Scheduling Strategy for Heterogeneous Distributed Computing Systems

  • El-Zoghdy, S.F.;Ghoneim, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.117-135
    • /
    • 2016
  • Performance enhancement is one of the most important issues in high performance distributed computing systems. In such computing systems, online users submit their jobs anytime and anywhere to a set of dynamic resources. Jobs arrival and processes execution times are stochastic. The performance of a distributed computing system can be improved by using an effective load balancing strategy to redistribute the user tasks among computing resources for efficient utilization. This paper presents a multi-class load balancing strategy that balances different classes of user tasks on multiple heterogeneous computing nodes to minimize the per-class mean response time. For a wide range of system parameters, the performance of the proposed multi-class load balancing strategy is compared with that of the random distribution load balancing, and uniform distribution load balancing strategies using simulation. The results show that, the proposed strategy outperforms the other two studied strategies in terms of average task response time, and average computing nodes utilization.

End-to-End Delay Analysis of a Dynamic Mobile Data Traffic Offload Scheme using Small-cells in HetNets

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.9-16
    • /
    • 2021
  • Recently, the traffic volume of mobile communications increases rapidly and the small-cell is one of the solutions using two offload schemes, i.e., local IP access (LIPA) and selected IP traffic offload (SIPTO), to reduce the end-to-end delay and amount of mobile data traffic in the core network (CN). However, 3GPP describes the concept of LIPA and SIPTO and there is no decision algorithm to decide the path from source nodes (SNs) to destination nodes (DNs). Therefore, this paper proposes a dynamic mobile data traffic offload scheme using small-cells to decide the path based on the SN and DN, i.e., macro user equipment, small-cell user equipment (SUE), and multimedia server, and type of the mobile data traffic for the real-time and non-real-time. Through analytical models, it is shown that the proposed offload scheme outperforms the conventional small-cell network in terms of the delay of end-to-end mobile data communications and probability of the mobile data traffic in the CN for the heterogeneous networks.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

A Study on Logical Cooperative Entity-Based Multicast Architecture Supporting Heterogeneous Group Mobility in Mobile Ad Hoc Networks (Mobile Ad Hoc 네트워크에서 이질적 그룹 이동성을 지원하는 논리적 협업 개체 기반의 멀티캐스트 구조 연구)

  • Kim, Kap-Dong;Kim, Sang-Ha
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.171-178
    • /
    • 2007
  • In mobile ad hoc networks, an application scenario requires mostly group mobility behavior in the mix of group moving nodes and individually moving nodes. The nodes of those applications tend to belong to the movement group with similar movement behavior. Group mobility is one of the good methods to improve scalability, and reduces the protocol overhead. In this paper, we propose the multicast architecture which regards nodes that have equal group mobility in the heterogeneous group mobility network as the single entity with the multiple interfaces and composes multicast tree, The logical cooperative entity-based multicast architecture accommodates the scalability, the multicast tree simplification, and the protocol overhead reduction which arc obtained from the hierarchical multicast architecture, while it maintains the nat multicast architecture for the data transmission. It also prevents the concentration of the energy consumption dispersing data forwarding load into the several ingress/egress nodes. Results obtained through simulations show that logical cooperative entity based multicast protocol with multiple interfaces offers the protocol scalability and the efficient data transmission.

Hop-by-Hop Dynamic Addressing Based Routing Protocol for Monitoring of long range Underwater Pipeline

  • Abbas, Muhammad Zahid;Bakar, Kamalrulnizam Abu;Ayaz, Muhammad;Mohamed, Mohammad Hafiz;Tariq, Moeenuddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.731-763
    • /
    • 2017
  • In Underwater Linear Sensor Networks (UW-LSN) routing process, nodes without proper address make it difficult to determine relative sensor details specially the position of the node. In addition, it effects to determine the exact leakage position with minimized delay for long range underwater pipeline monitoring. Several studies have been made to overcome the mentioned issues. However, little attention has been given to minimize communication delay using dynamic addressing schemes. This paper presents the novel solution called Hop-by-Hop Dynamic Addressing based Routing Protocol for Pipeline Monitoring (H2-DARP-PM) to deal with nodes addressing and communication delay. H2-DARP-PM assigns a dynamic hop address to every participating node in an efficient manner. Dynamic addressing mechanism employed by H2-DARP-PM differentiates the heterogeneous types of sensor nodes thereby helping to control the traffic flows between the nodes. The proposed dynamic addressing mechanism provides support in the selection of an appropriate next hop neighbour. Simulation results and analytical model illustrate that H2-DARP-PM addressing support distribution of topology into different ranges of heterogeneous sensors and sinks to mitigate the higher delay issue. One of the distinguishing characteristics of H2-DARP-PM has the capability to operate with a fewer number of sensor nodes deployed for long-range underwater pipeline monitoring.

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.

Novel Architecture of Self-organized Mobile Wireless Sensor Networks

  • Rizvi, Syed;Karpinski, Kelsey;Razaque, Abdul
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.163-176
    • /
    • 2015
  • Self-organization of distributed wireless sensor nodes is a critical issue in wireless sensor networks (WSNs), since each sensor node has limited energy, bandwidth, and scalability. These issues prevent sensor nodes from actively collaborating with the other types of sensor nodes deployed in a typical heterogeneous and somewhat hostile environment. The automated self-organization of a WSN becomes more challenging as the number of sensor nodes increases in the network. In this paper, we propose a dynamic self-organized architecture that combines tree topology with a drawn-grid algorithm to automate the self-organization process for WSNs. In order to make our proposed architecture scalable, we assume that all participating active sensor nodes are unaware of their primary locations. In particular, this paper presents two algorithms called active-tree and drawn-grid. The proposed active-tree algorithm uses a tree topology to assign node IDs and define different roles to each participating sensor node. On the other hand, the drawn-grid algorithm divides the sensor nodes into cells with respect to the radio coverage area and the specific roles assigned by the active-tree algorithm. Thus, both proposed algorithms collaborate with each other to automate the self-organizing process for WSNs. The numerical and simulation results demonstrate that the proposed dynamic architecture performs much better than a static architecture in terms of the self-organization of wireless sensor nodes and energy consumption.

A Performance Monitoring System for Heterogeneous SOAP Nodes (이기종 SOAP 노드의 실시간 성능 모니터링 시스템)

  • Lee Woo-Joong;Kim Jungsun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.484-498
    • /
    • 2004
  • In this paper. we propose a novel performance monitoring scheme for heterogeneous SOAP nodes. The scheme is basically based on two-level (kernel-level and user-level) packet filtering of TCP flows. By TCP flow, we mean a sequence of raw packet streams on a TCP transaction. In this scheme, we detect and extract SOAP operations embedded in SOAP messages from TCP flows. Therefore, it becomes possible to monitor heterogeneous SOAP nodes deployed on diverse SOAP-based middlewares such as .Net and Apache AXIS. We present two implementation mechanisms for the proposed scheme. The first mechanism tries to identify SOAP operations by analyzing all fragmented SOAP messages on TCP flows. However, a naive policy would incur untolerable overhead since it needs to copy all packets from kernel to user space. The second mechanism overcomes this problem by selectively copying packets from kernel to user space. For selective copying, we use a kernel-level packet filtering method that makes use of some representative TCP flags.(e.g. SIN, FIN and PSH). In this mechanism, we can detect SOAP operations only from the last fragment of SOAP messages in most cases. Finally, we implement a SOAP monitoring system using a component ca]led SOAP Sniffer that realizes our proposed scheme, and show experimental results. We strongly believe that our system will play a vital role as a tool for various services such as transaction monitoring and load balancing among heterogeneous SOAP nodes.

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.

Routing Configuration Scheme of Ad hoc Node Using Smart Packet in Heterogeneous Routing Domains (이질적인 라우팅 도메인에서 스마트 패킷을 사용한 이동 노드의 라우팅 프로토콜 설정 기법)

  • Choi Jae-Duck;Roh Hyo-Sun;Kim Young-Han;Jung Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.803-810
    • /
    • 2006
  • Mobile ad hoc nodes are supposed to be equipped with a number of operation modules including a specific routing operation module in heterogeneous MANET environment. It is not possible for a mobile node to carry all the necessary operation modules due to the limited resources. This paper proposes a scheme to reconfiguring mobile ad hoc nodes using smart packets in heterogeneous routing domains. The smart packet protocol has a capability to transfer a binary execution module to a mobile node, by which a node can be equipped with any necessary routing modules in any MANET environment. The proposed smart packet agent is designed to be suitable to a light weight terminal owing to its simple architecture. The utility of the proposed scheme was demonstrated through an example of DYMO scenario in the wireless network.