Communications for Statistical Applications and Methods
/
v.22
no.6
/
pp.575-587
/
2015
The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.
Functionally Graded Materials (FGM) as advanced heterogeneous composite materials have a higher performance than a conventional composite or bimaterial composite under some severe environments. As a heterogeneous material, FGM is commonly used in spacecraft, defense, nuclear and automotive industries due to its excellent properties. The purposes of this study are to evaluate the stress distribution and crack behaviors by the multiscale simulation. FGM contains two or more than two materials that the composition is structured continuously. Two types of FGM model are suggested, which are created by arbitrary prediction of the volume fraction and the exponential function. Aluminum as the metal matrix constituent and silicon carbide as the ceramic particle constituent are structured gradually by two types and the three point bending test also estimated. Moreover, two kinds of crack location were introduced in order to get the influences of material property distribution on the stress intensity factor. From the results we found that the stress intensity factors are increased in the case from softer to stiffer material, while vice versa.
Journal of Korean Institute of Industrial Engineers
/
v.35
no.2
/
pp.150-159
/
2009
The heterogeneous fleet vehicle routing problem(HVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles with various capacities, fixed costs and variable costs. We propose a new conceptual HVRPCR(HVRP with customer restriction) model including additional customer restrictions in HVRP. In this paper, we develop hybrid particle swarm optimization(HPSO) algorithm with 2-opt and node exchange technique for HVRP. The solution representation is a n-dimensional particle for HVRP with N customers. The decoding method for this representation starts with the transformation of particle into a priority list of customer to enter route and limit of vehicle to serve each customer. The vehicle routes are then constructed based on the customer priority list and limit of vehicle to serve. The proposed algorithm is tested using 8 benchmark problems and it consistently produces high-quality solutions, including new best solutions. The numerical results show that the proposed algorithm is robust and efficient.
In this paper, we investigate the problem of power allocation in a heterogeneous network that is composed of a pair of cognitive users (CUs) and an infrastructure-based primary network. Since CUs have only limited effective spectrum-sensing ability and primary users (PUs) are not active all the time in all locations and licensed bands, we set up a new multi-area model to characterize the heterogeneous network. A novel combined interference-avoidance policy corresponding to different PU-appearance situations is introduced to protect the primary network from unacceptable disturbance and to increase the spectrum secondary-reuse efficiency. We use dual decomposition to transform the original power allocation problem into a two-layer optimization problem. We propose a low-complexity joint power-optimizing method to maximize the transmission rate between CUs, taking into account both the individual power-transmission constraints and the combined interference power constraint of the PUs. Numerical results show that for various values of the system parameters, the proposed joint optimization method with combined PU protection is significantly better than the opportunistic spectrum access mode and other heuristic approaches.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.5
/
pp.2243-2257
/
2019
A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4742-4770
/
2019
Cloud computing provides a broad range of services like operating systems, hardware, software and resources. Availability of these services encourages data owners to outsource their intensive computations and massive data to the cloud. However, considering the untrusted nature of cloud server, it is essential to encrypt the data before outsourcing it to the cloud. Unfortunately, this leads to a challenge when it comes to providing search functionality for encrypted data located in the cloud. To address this challenge, this paper presents a public key encryption with equality test for heterogeneous systems (PKE-ET-HS). The PKE-ET-HS scheme simulates certificateless public encryption with equality test (CLE-ET) with the identity-based encryption with equality test (IBE-ET). This scheme provides the authorized cloud server the right to actuate the equivalence of two messages having their encryptions performed under heterogeneous systems. Basing on the random oracle model, we construct the security of our proposed scheme under the bilinear Diffie-Hellman (BDH) assumption. Eventually, we evaluate the size of storage, computation complexities, and properties with other related works and illustrations indicate good performance from our scheme.
Neuromorphic computing generally shows significantly better power, area, and speed performance than neural network computation using CPU and GPU. These characteristics are suitable for resource-constrained IoT environments where energy consumption is important. However, there is a problem in that it is necessary to modify the source code for environment setting and application operation according to heterogeneous IoT devices that support neuromorphic computing. To solve these problems, NAAL was proposed and implemented in this paper. NAAL provides functions necessary for IoT device control and neuromorphic architecture abstraction and inference model operation in various heterogeneous IoT device environments based on common APIs of NAAL. NAAL has the advantage of enabling additional support for new heterogeneous IoT devices and neuromorphic architectures and computing devices in the future.
Proceedings of the Korea Society for Energy Engineering kosee Conference
/
2001.11a
/
pp.69-76
/
2001
The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By divding the complicated coal gasification process into several simplified stages suh as slurry evaporation, coal devolitilisation and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k-$\varepsilon$turbulence model was used for the gas phase flow while the Random-trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy Break-Up(EBU) model were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed informations about the flow field, temperature inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as function of $O_2$/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measurd quality of the atngas was better than the calculated one when the $O_2$/coal ratio increases. The result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.3
/
pp.200-207
/
2001
In this paper, we propose an HMM(Hidden Markov modeJ)-MLP(Multi-layer perceptron) hybrid model for recognizing legal words on the English bank check. We adopt an explicit segmentation-based word level architecture to implement an HMM engine with nonscaled and non-normalized symbol vectors. We also introduce an MLP for implicit segmentation-based word recognition. The final recognition model consists of a hybrid combination of the HMM and MLP with a new hybrid probability measure. The main contributions of this model are a novel design of the segmentation-based variable length HMMs and an efficient method of combining two heterogeneous recognition engines. ExperimenLs have been conducted using the legal word database of CENPARMI with encouraging results.
The heterogeneous postal delivery model assumes that each intermediate node in the multicasting tree incurs a constant switching time for each message that is sent. We have proposed a new model where we assume a more generalized switching time at intermediate nodes. In our model, a child node v of a parent u has a switching delay vector, where the ith element of the vector indicates the switching delay incurred by u for sending the message to v after sending the message to i-1 other children of u. Given a multicast tree and switching delay vectors at each non-root node 5 in the tree, we provide an O(n$^{\frac{5}{2}}$) optimal algorithm that will decide the order in which the internal (non-leaf) nodes have to send the multicast message to its children in order to minimize the maximum end-to-end delay due to multicasting. We also show an important lower bound result that optimal multicast switching delay problem is as hard as min-max matching problem on weighted bipartite graphs and hence O(n$^{\frac{5}{2}}$) running time is tight.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.