• Title/Summary/Keyword: heterogeneous computing resources

Search Result 78, Processing Time 0.033 seconds

ABS Ratio Estimation Considering the Number of UEs in CRE Regions for LTE-A Heterogeneous Networks (LTE-A 기반 이종 네트워크에서 CRE 영역내 단말들의 수를 고려한 ABS 비율 산출 방법)

  • Sun, Jong-Suk;Roh, Byeong-hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.104-112
    • /
    • 2017
  • The CRE (Cell Range Expansion) that selects the small cell with more efficient uplink resources has been developed by 3GPP to relieve the problem of the traffic imbalance due to the power differences between macro and small cells in HetNet. In addition, ABS (Almost Blank Subframes) has been proposed to resolve the signal interference problem due to the operation CREs. This paper proposes an effective method to calculate the ABS ratio by considering the proportion of the number of UEs in CRE and macro cell ranges, as well as the number of small cells in a macro cell. The proposed method has been implemented on the LTESim simulator, and compared with previously proposed methods. The experimental results show that the proposed method can improve the throughput and packet loss ratio performances. In particular, it is also shown that CRE bias values affect those performances, and there exist effective CRE bias values to derive the best performances.

A Dual Transcoding Method for Retaining QoS of Video Streaming Services under Restricted Computing Resources (동영상 스트리밍 서비스의 QoS유지를 위한 듀얼 트랜스코딩 기법)

  • Oh, Doohwan;Ro, Won Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.7
    • /
    • pp.231-240
    • /
    • 2014
  • Video transcoding techniques provide an efficient mechanism to make a video content adaptive to the capabilities of a variety of clients. However, it is hard to provide an appropriate quality-of-service(QoS) to the clients owing to heavy workload on transcoding operations. In light of this fact, this paper presents the dual transcoding method in order to guarantee QoS in streaming services by maximizing resource usage in a transcoding server equipped with both CPU and GPU computing units. The CPU and GPU computing units have different architectural features. The proposed method speculates workload of incoming transcoding requests and then schedules the requests either to the CPU or GPU accordingly. From performance evaluation, the proposed dual transcoding method achieved a speedup of 1.84 compared with traditional transcoding approach.

Work Allocation Methods and Performance Comparisons on the Virtual Parallel Computing System based on the IBM Aglets (IBM Aglets를 기반으로 하는 가상 병렬 컴퓨팅 시스템에서 작업 할당 기법과 성능 비교)

  • Kim, Kyong-Ha;Kim, Young-Hak;Oh, Gil-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.411-422
    • /
    • 2002
  • Recently, there have been active researches about the VPCS (Virtual Parallel Computing System) based on multiple agents. The PVCS uses personal computers or workstations that are dispersed all over the internet, rather than a high-cost supercomputer, to solve complex problems that require a huge number of calculations. It can be made up with either homogeneous or heterogeneous computers, depending on resources available on the internet. In this paper, we propose a new method in order to distribute worker agents and work packages efficiently on the VPCS based on the IBM Aglets. The previous methods use mainly the master-slave pattern for distributing worker agents and work packages. However, in these methods the workload increases dramatically at the central master as the number of agents increases. As a solution to this problem, our method appoints worker agents to distribute worker agents and workload packages. The proposed method is evaluated in several ways on the VPCS, and its results are improved to be worthy of close attention as compared with the previous ones.

DART: Fast and Efficient Distributed Stream Processing Framework for Internet of Things

  • Choi, Jang-Ho;Park, Junyong;Park, Hwin Dol;Min, Ok-gee
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • With the advent of the Internet-of-Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end-user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices.

ENTERPRISE WIDE CENTRALIZED APPLICATION LEVEL ACCESS CONTROL USING XACML

  • Shaikh, Riaz A.;Rajput, Saeed;Zaidi, S.M.H.;Sharif, Kashif
    • Proceedings of the CALSEC Conference
    • /
    • 2005.03a
    • /
    • pp.62-67
    • /
    • 2005
  • In traditional approach, enterprise-wide consistent security policy enforcement for applications is very difficult task. Therefore, industry is now moving towards new unified enterprise application security concept that consist of centralized authentication and authorization mechanism. The eXtensible Access Control Markup Language (XACML); an XML-based standard defined by OASIS, is most suitable choice which can support centralized, role based, context aware access control mechanism. It is designed to provide universal standard for writing authorization policies and access control request/response language for managing access to the resources. This paper includes a brief overview on XACML and discusses its benefits, limitations and a data flow process. We propose a new generic access control architecture that supports enterprise wide centralized application level access control mechanism using XACML. The other benefits which can be achieved through this architecture are, reduce adnministration cost and complexity, support of heterogeneous computing platforms, centralized monitoring system, automatic fail over, scalability and availability, open standard based solution and secure communication.

  • PDF

Implementation of Bus Expansion System for Heterogeneous Computing Resources (이기종 자원을 위한 버스 확장 시스템 구현)

  • Kwangho CHA;Kyungmo Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.34-36
    • /
    • 2023
  • 여러 인공지능 서비스의 보급은 초고성능 컴퓨팅 시스템 아키텍처의 변화를 야기하였고 다양한 계산 자원들의 활용이 모색되고 있다. 본 연구에서는 이러한 계산 자원들의 수용을 위해 범용적으로 사용되는 PCIe 버스를 기반으로 시스템 버스 확장 장치를 설계하고 구현하였다. PCIe 4.0 스위치를 기반으로 하는 확장 보드와 어댑터 카드를 개발하였고 GPU를 활용하여 실제 시스템으로의 활용 가능성을 검증하였다.

An Engine for DRA in Container Orchestration Using Machine Learning

  • Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.126-133
    • /
    • 2023
  • Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.

Ontology based reasoning for resource sharing in ubiquitous smart space (유비쿼터스 지능 공간에서 자원 공유를 위한 온톨로지기반 추론)

  • Kang, Sun-Hee;Park, Jong-Hyun;Kim, Young-Kuk;Kang, Ji-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.489-493
    • /
    • 2008
  • One of the main goals of ubiquitous computing is to share a variety of resources existing to smart space and compose an efficient services by reasoning the most user-suitable resources, However, each applications describe the resources and services in different expression ways and these heterogeneous expression ways make it difficult for sharing and reasoning of the resources. Therefore, it is necessary to unify the information for resources sharing and ontology is one of the solution for the unification. In this paper, we define the possible services in the ubiquitous smart space and its ontology. Also, we propose a resource ontology to represent the usable resources in the space. our ontologies are used to reason resource set for composing user-suitable service in the ubiquitous smart space.

  • PDF

2D Prestack Generalized-screen Migration (2차원 중합전 일반화된-막 구조보정)

  • Song, Ho-Cheol;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.315-322
    • /
    • 2010
  • The phase-screen and the split-step Fourier migrations, which are implemented in both the frequency-wavenumber and frequency-space domains by using one-way scalar wave equation, allow imaging in laterally heterogeneous media with less computing time and efficiency. The generalized-screen migration employs the series expansion of the exponential, unlike the phase-screen and the split-step Fourier migrations which assume the vertical propagation in frequency-wavenumber domain. In addition, since the generalized-screen migration generalizes the series expansion of the vertical slowness, it can utilize higher-order terms of that series expansion. As a result, the generalized-screen migration has higher accuracy in computing the propagation with wide angles than the phase-screen and split-step Fourier migrations for media with large and rapid lateral velocity variations. In this study, we developed a 2D prestack generalized-screen migration module for imaging a complex subsurface efficiently, which includes various dips and large lateral variations. We compared the generalized-screen propagator with the phase-screen propagator for a constant perturbation model and the SEG/EAGE salt dome model. The generalized-screen propagator was more accurate than the phase-screen propagator in computing the propagation with wide angles. Furthermore, the more the higher-order terms were added for the generalized-screen propagator, the more the accuracy was increased. Finally, we compared the results of the generalizedscreen migration with those of the phase-screen migration for a model which included various dips and large lateral velocity variations and the synthetic data of the SEG/EAGE salt dome model. In the generalized-screen migration section, reflectors were positioned more accurately than in the phase-screen migration section.

Small-cell Resource Partitioning Allocation for Machine-Type Communications in 5G HetNets (5G 이기종 네트워크 환경에서 머신타입통신을 위한 스몰셀 자원 분리 할당 방법)

  • Ilhak Ban;Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2023
  • This paper proposes a small cell resource partitioning allocation method to solve interference to machine type communication devices (MTCD) and improve performance in 5G heterogeneous networks (HetNet) where macro base station (MBS) and many small cell base stations (SBS) are overlaid. In the 5G HetNet, since various types of MTCDs generate data traffic, the load on the MBS increases. Therefore, in order to reduce the MBS load, a cell range expansion (CRE) method is applied in which a bias value is added to the received signal strength from the SBS and MTCDs satisfying the condition is connected to the SBS. More MTCDs connecting to the SBS through the CRE will reduce the load on the MBS, but performance of MTCDs will degrade due to interference, so a method to solve this problem is needed. The proposed small cell resource partitioning allocation method allocates resources with less interference from the MBS to mitigate interference of MTCDs newly added in the SBS with CRE, and improve the overall MTCD performace using separating resources according to the performance of existing MTCDs in the SBS. Through simulation results, the proposed small cell resource partitioning allocation method shows performance improvement of 21% and 126% in MTCDs capacity connected to MBS and SBS respectively, compared to the existing resource allocation methods.