• 제목/요약/키워드: heterogate (HG)

검색결과 2건 처리시간 0.017초

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.224-236
    • /
    • 2013
  • This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.

Assessment of Ambipolar Behavior of a Tunnel FET and Influence of Structural Modifications

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권4호
    • /
    • pp.482-491
    • /
    • 2012
  • In the present work, comprehensive investigation of the ambipolar characteristics of two silicon (Si) tunnel field-effect transistor (TFET) architectures (i.e. p-i-n and p-n-p-n) has been carried out. The impact of architectural modifications such as heterogeneous gate (HG) dielectric, gate drain underlap (GDU) and asymmetric source/drain doping on the ambipolar behavior is quantified in terms of physical parameters proposed for ambipolarity characterization. Moreover, the impact on the miller capacitance is also taken into consideration since ambipolarity is directly related to reliable logic circuit operation and miller capacitance is related to circuit performance.