JALAL, Raja Nabeel-Ud-Din;SARGIACOMO, Massimo;SAHAR, Najam Us;FAYYAZ, Um-E-Roman
The Journal of Asian Finance, Economics and Business
/
v.7
no.7
/
pp.27-34
/
2020
The study investigates herding behavior in cryptocurrencies in different situations. This study employs daily returns of major cryptocurrencies listed in CCI30 index and sub-major cryptocurrencies and major stock returns listed in Dow-Jones Industrial Average Index, from 2015 to 2018. Quantile regression method is employed to test the herding effect in market asymmetries, inter-dependency and intra-dependency cases. Findings confirm the presence of herding in cryptocurrency in upper quantiles in bullish and high volatility periods because of overexcitement among investors, which lead to high volume trading. Major cryptocurrencies cause herding in sub-major cryptocurrencies, but it is a unidirectional relation. However, no intra-dependency effect among cryptocurrencies and equity market is observed. Results indicate that in the CKK model herding exists at upper quantile in market that may be due when the market is moving fast, continuously trading, and bullish trend are prevailing. Further analysis confirms this narrative as, at upper quantile, the beta of bullish regime is negative and significant, meaning the main source of market herding is a bullish trend in investment, which increases market turbulence and gives investors opportunity to herd. Also, we found that herding in cryptocurrencies exits in high volatility periods, but this herding mostly depends on market activity, not market movement.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.4
/
pp.322-329
/
2005
This paper considers the application of mobile robot to the herding problem. The herding problem involves a ‘pursuer’ trying to herd a moving ‘evader’ to a predefined location. In this paper, two mobile robots act as pursuer and evader in the fenced area, where the pursuer robot uses a fuzzy cooperative decision strategy (FCDS) in the herding algorithm. To herd evader robot to a predefined position, the pursuer robot calculates strategic herding point and then navigates to that point using FCDS. FCDS consists of a two-level hierarchy: low level motion descriptors and a high level coordinator. In order to optimize the FCDS, we use the multithread evolutionary programming algorithm. The proposed algorithm is implemented in the real mobile robot system and its performance is demonstrated using experimental results.
The Journal of Asian Finance, Economics and Business
/
v.7
no.9
/
pp.147-158
/
2020
We apply Return Dispersion Model by calculating CSAD (Cross-sectional standard deviation of return) and State Space Model to identify herding behavior in the period of pandemic (H1N1 and COVID-19). Employing data from TEJ and Data Stream, this paper examines whether the herding behavior is existing in Vietnam and Taiwan stock market, especially during pandemic influenza. We compare the differences in herding behavior between frontier and emerging markets by examining different industries across Vietnam and Taiwan stock market approaches. The results indicate solid evidence for investor herd configuration in the various industries of Vietnam and Taiwan. The herding impact in the industries will be greater than with the aggregate market. The different industries respond differently to influenza pandemic panics through uptrend and downtrend demonstrations. Up to 12 industries were found to have herding in Vietnam, while Taiwan had only 5 of 17 industries classified. Taiwan market, an emerging and herding-level market, has changed due to the impact of changing conditions such as epidemics, but not as strongly as in Vietnam. From there, we see that the disease is a factor that, not only creates anxiety from a health perspective, but also causes psychological instability for investors when investing in the market.
JABEEN, Shaista;RIZAVI, Sayyid Salman;NASIR, Adeel
The Journal of Asian Finance, Economics and Business
/
v.8
no.10
/
pp.207-218
/
2021
The present research intends to examine the herding aspect during the COVID-19 outbreak. The study is conducted to achieve specific objectives, so the underlying sampling technique is purposive sampling. The considered data source is the Pakistan Stock Exchange (PSX). Daily stock prices of 528 listed companies in PSX have been taken from the official website of PSX from 1998 to 2021. The current study envisions investigating the herding aspects for pre-pandemic and the time covering the pandemic period. The study has also targeted ten sectors of PSX. The present study's motive is to investigate investors' herding prospects before and during the pandemic in the Pakistan Stock Exchange (PSX) and its selected sectors. Daily closing stock prices of listed companies have been collected from the official website of PSX to calculate the stock returns. The Cross-Sectional Absolute Deviation (CSAD) has been used as a herding measure. Findings revealed that herding has not been observed in PSX during both time spans and even not during the bullish and bearish trends. However, robust sectoral evidence has been observed during the pandemic. It implies that investors in PSX tend to follow the crowd irrespective of making their own decisions to avoid further losses.
In this study, the occurrence and degree of herding behavior as a market participant behavior in a housing market were analyzed. For the analysis method, the actual sales price was applied in the CSAD (Cross-sectional Absolute Deviation) model, which has been used the most of late for herding behavior analysis. For the analysis contents, these were subdivided into region, elapsed year, size, and market condition to analyze the regionality and the internal and external factors. For the study results, first, there was no herding behavior in the entire region of Seoul. By region, herding behavior occurred in the downtown, southeast, and northwest regions, which coincided with the results of the precedent study (Ngene et al., 2017). Second, in the market analysis by elapsed year, herding behavior was captured in dilapidated dwellings. By size, herding behavior was observed in small-scale ($60m^2$ or less) apartments and in $85m^2$ or higher and less than $102m^2$ national housing units. Third, during the time of the global financial crisis, herding behavior was not observed in all the regions, whereas when the market situations were in a boom cycle, it was observed in the northwest region. These results suggest that there is a difference from the stock market, where in a period of recession, herding behavior occurs intensively with the expanding fear of incurring losses. This study is significant in that it analyzed the market participant behaviors in the behavioral economic aspects to better understand the abnormal phenomenon in a housing market, and in that it additionally provides a psychological factor - market participant behavior - in market analysis.
There are many literatures about the herding behavior of institutional investors but there is lack of literatures about the relation among several investor groups consisting of institutional investors. So we investigate the relation among sub-institutional investor groups like bank, insurance companies, pension funds using KRX intraday trading data of 2009. As the result, we find that foreign, individual, and securities firm investors trade in the opposite direction of other investor groups including pension funds. And pension, insurance, asset management, private equity funds, other companies, government, and banks are cross-mimicking each other, so we conclude that these investors make herding behavior. In 2009 institutional investors except securities firms make herding in a short period, and insurance, asset management, pension funds and other companies make herding and self-mimicking in all period, but there is no herding and mimicking after foreign investors.
The Journal of Asian Finance, Economics and Business
/
v.8
no.1
/
pp.53-59
/
2021
This research aims to examine the model of investor herding behavior in making investment decisions in the Indonesian capital market, which is influenced by social and information impacting on the value of the Book Value Per Share (BVPS). The latest stock market conditions show that most investors make the same error pattern in making investment decisions that result in losses. The experiment involves two independent variables, namely, information about BVPS and social influence. This study used a 2×2 factorial design laboratory experimental method. Data collection was carried out through treatment of a sample of 100 individual investors listed on the Indonesia Stock Exchange. Univariate Two-Way Analysis of Variance (ANOVA) statistical tool was used to test the independent variable on the dependent variable. Research results showed that the social influence originating from expert investors is more influential than the Book Value Per Share (BVPS) information on the behavior of herding investors in making investment decisions. These findings suggest that investors know their psychological factors, thereby increasing self-control and investment analysis skills. Further research can use psychological bias and other indicators of accounting relevant information such as Earning Per Share (EPS) to test herding behavior in investment decision making in the capital market.
The Journal of Asian Finance, Economics and Business
/
v.8
no.3
/
pp.845-853
/
2021
The stock market shows the current health of an economy, and investment performance represents it. This study aims to clarify the relationship between financial behavior and investment decisions as well as its impact on investment results. Determine the influence of behavioral factors on individual investors' investment decisions and investment performance on the Vietnam stock market. The study surveyed 250 investors. The main analytical methods used are Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). Research results show that Heuristic, Prospect, Market, and Herding directly and positively affect investment decision-making. Besides, the above factors have a direct and positive effect on investment performance. In particular, the Prospect factor has the strongest influence on investment decision-making and investment performance. The major findings of this study suggested that the important role of Heuristic, Prospect, Market, and Herding on Investment Decision-making and Investment Performance. Prospect had the strongest impact on Investment decision-making (β = 0.275). Heuristic had the second strongest impact (β = 0.257), then Herding (β = 0.202), and finally Market (β = 0.189) had the weakest effect. Regarding Investment Performance, the Prospect factor has a higher degree of impact than Heuristic Herding and Market.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.7
/
pp.2356-2376
/
2021
In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.47
no.4
/
pp.327-337
/
2011
This study was conducted to develop energy-efficient LED lamps with an excellent fishing performance for an anchovy scoop net by comparing the functions of 6 different lamps- incandescent, blue LED, green LED, white LED, yellow LED and red LED lamp. We used incandescent and red LED lamps only for the initial test and then excluded because those showed the lowest herding capacity. According to the result, yellow LED showed lower herding capacity in comparison with the blue, green and white one. Although the herding performance of the blue, green and white LED was similar in almost tests, herding speed to the each light was different. The anchovies were gathered into the blue LED as the speed of 39.88cm/s that was the fastest. Green LED was the second as the speed of 33.28cm/s. White LED was the slowest as the speed of 26.73cm/s. We will have field tests because we found the result that yellow LED's herding performance was better than green LED's for 5 seconds comparing after starting in some tests.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.