• Title/Summary/Keyword: herbicide inhibition

Search Result 104, Processing Time 0.031 seconds

Effect of Various Organic Materials on Weed Control in Environment-friendly Rice Paddy Fields (벼 친환경재배에서 다양한 유기자원별 잡초방제효과)

  • Kwon, Oh-Do;Park, Heung-Gyu;An, Kyu-Nam;Lee, Yeen;Shin, Seo-Ho;Shin, Gil-Ho;Shin, Hae-Ryoung;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.272-281
    • /
    • 2010
  • The objective of this research was to find out the weed management techniques in environment-friendly rice paddy fields through the study on herbicidal effects and problems of various organic materials. This experiment was conducted under different conditions of weed species and weed densities in environment-friendly rice paddy fields. There was no difference in weedy efficacy on golden apple snail (GAS), paper mulching (PM), and machine weeding (MW) between low and high weed densities. However, the effect of weed control in rice bran (RB) and effective microorganism (EM) + molasses was higher in high weed density than in low weed density. In general, the effect of weed control as affected by various organic materials was in the order of GAS (97-100%) > PM (93-98%) > RB (15-80%) > EM (7-31%). GAS provided excellent control of all weed species tested except for Persicaria hydropiper. PM gave acceptable control of the weed species except for Echinochloa crus-galli, Ludwigia prostrata, and Eleocharis kuroguwai. However, MW gave fair control (70% biomass reduction) of all weed species tested. BR followed by MW or EM followed by MW treatments had similar effect on weed control compared to each treatment alone. However, BR followed by GAS or EM followed by GAS provided 100% control of weed species tested. The level of rice foliar injury caused by various organic materials was in the order of GAS and MW (10-20%) > RB (10-15%) > PM and EM (5-7%). Typical symptoms of organic materials are wilting, inhibition of growth, missing hill, and reduction of tiller. Cost for weed control of GAS, RB, EM, and PM were 2.1, 3.1, 2.3, and 13.2 times higher than that of the herbicide. These data indicate that GAS was the best method for weed management in environmentfriendly rice paddy fields. Further study is required to elucidate the mechanisms underlying the rice injury as affected by GAS.

Morphological and Anatomical Response of Rice and Barnyardgrass to Herbicides under Various Cropping Patterns - I. Response to Pyrazolate (재배양식(栽培樣式)에 따른 수종(數種) 제초제(除草劑)에 대한 벼와 피의 해부형태적(解剖形態的) 반응차이(反應差異) - I. Pyrazolate에 대한 반응차이(反應差異))

  • Chon, S.U.;Guh, J.O.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.30-38
    • /
    • 1995
  • Soil-applied pre-emergence herbicide, pyrazolate(4-(2, 4-dichlorobenzoyl)-1, 3-dimethyl pyrazol-5-yl-p-toluene sulphonate) induced, twist effect of shoots of barnyardgrass under dry conditions, and etiolated leaf and stem of that under water condition. Plant height and root length of rice broadcast on soil surface were similar to the untreated control, but plant height of rice drilled in soil was more inhibited than root length as compared with the untreated control, while development of barnyardgrass seedling was severely inhibited at 20 days after application. The inhibition rate was much higher under water condition than under dry condition, but difference in rice and barnyardgrass did not abserve. However, growth of transplanted rice shown to increase to the untreated control. Shoot and root fresh weight of rice broadcast on soil surface was increase as compared with the untreated control, and that of rice drilled in soil was not affected whereas that of barnyardgrass was severely inhibited by 42% and 41%, respectively. Under dry condition at 20 days after pyrazolate application while root growth of rice broadcast on soil surface under water condition was deadly inhibited and development of barnyardgrass was almost completely inhibited. On the other hand, microscopic studies showed that constriction of mesophyll cell by destruction of chloroplast of barnyardgrass were occurred only under dry condition, whereas damage of rice and barnyardgrass under water and transplanting condition were not observed. Anatomical change in the meristernatic region of rice and barnyardgrass was not occurred, and similar to intact plant regardless of cropping patterns.

  • PDF

Effects of Aminotriazole on Lung Toxicity of Paraquat Intoxicated Mice (Paraquat중독에 의한 폐독성에 미치는 Aminotriazole의 영향)

  • Lee, Seung-Il;An, Gi-Wan;Chung, Choon-Hae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.222-230
    • /
    • 1994
  • Background: Paraquat, a widely used herbicide, is extremely toxic, causing multiple organ failure in humans. Paraquat especially leads to irreversible progressive pulmonary fibrosis, which is related to oxygen free radicals. However, its biochemical mechanism is not clear. Natural mechanisms that prevent damage from oxygen free radicals include changes in glutathione level, G6PDH, superoxide dismutase(SOD), catalase, and glutathione peroxidase. The authors think catalase is closely related to paraquat toxicity in the lungs Method: The effects of 3-amino-1,2,4-triazole(aminotriazole), a catalase inhibitor, on mice administered with paraquat were investigated. We studied the effects of aminotriazole on the survival of mice administered with paraquat, by comparing life spans between the group to which paraquat had been administered and the group to which a combination of paraquat and aminotriazole had been administered. We measured glutathion level, glucose 6-phosphate dehydrogenase(G6PDH), superoxide dismutase(SOD), catalase, and glutathione peroxidase(GPx) in the lung tissue of 4 groups of mice: the control group, group A(aminotriazole injected), group B(paraquat administered), group C(paraquat and aminotriazole administered). Results: The mortality of mice administered with paraquat which were treated with aminotriazole was significantly increased compared with those of mice not treated with aminotriazole. Glutathione level in group B was decreased by 20%, a significant decrease compared with the control group. However, this level was not changed by the administration of aminotriazole(group C). The activity of G6PDH in all groups was not significantly changed compared with the control group. The activities of SOD, catalase, and glutathione peroxidase(GPx) in the lung tissue were significantly decreased by paraquat administration(group B); catalase showed the largest decrease. Catalase and GPX were significantly decreased by aminotriazole treatment in mice administered with paraquat but change in SOD activity was not significant(group C). Conclusion: Decrease in catalase activity by paraquat suggests that paraquat toxicity in the lungs is closely related to catalase activity. Paraquat toxicity in mice is enhanced by aminotriazole administration, and its result is related to the decrease of catalase activity rather than glutathione level in the lungs. Production of hydroxyl radicals, the most reactive oxygen metabolite, is accelerated due to increased hydrogen peroxide by catalase inhibition and the lung damage probably results from nonspecific tissue injury of hydroxyl radicals.

  • PDF

Studies on Persistence of Pesticides in Soils and Crops under Polyethylene Film Mulching Culture II. Effect of Polyethylene Film mulching on Weed Emergence, Growth and Yield of Red pepper, Peanut and Sesame (폴리에틸렌 멀칭재배(栽培) 시(時) 농약(農藥)의 토양(土壤) 및 작물체중(作物体中) 잔류(殘留)에 관한 연구(硏究) 제(第) 2 보(報) 폴리에틸렌 멀칭이 잡초발생(雜草發生), 고추, 땅콩, 참깨의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Ryang, H.S.;Moon, Y.H.;Kim, N.E.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.306-315
    • /
    • 1987
  • In the red pepper field under polythylene film mulching(P.E.-mulching) culture, the weed emergence was completely inhibited by black P.E.-mulching. The emergence in clear P.E.-mulching decreased 90% compared to that in non-mulching. Weeding effect was high in the order of pendimethalin, diphenamid, alachlor and napropamide. The effect of herbicides was higher in clear P.E.-mulching than in non-mulching. Plant height and number of branches increased in the order of clear P.E.-, black P.E.-mulching, while the yield between black P.E.- and clear P.E.-mulching was not different. The herbicides had no effect on the growth and yield. In the peanut field, weed emergence was 80% lower in clear P.E.-mulching than in non-mulching. Weeding effect was excellent in the plot applied with alachlor, napropamide and diphenamid. The total number of branches, main stem height and shoot weight were 2.0, 1.7 and 2.4 times greater in clear P.E.-mulching than in non-mulching, respectively. Peanut yield was about 38% higher under clear P.E.-mulching than under non-mulching. The herbicides had no effect on the growth and yield. In the sesame field, rate of weed emergence was 10 times lower in clear P.E.-mulching than in non-mulching. Weeding effect of alachlor, napropamide and diphenamid was higher under clear P.E.-mulching than under non-mulching. Germination percentage of sesame greatly decreased in non-mulching compared with in clear P.E.-mulching. The germination was inhibited by the treatment of herbicides. The inhibition effect was increased in the order of alachlor, napropamide, and diphenamid. The initial crop injury in treatment of herbicides was greater in non-mulching than in clear P.E.-mulching. The crop recovered from the injury and exhibited regrowth in clear P.E.-mulching except the alachlor treatment, but there was no recovery in non-mulching. There was no significant difference yield between herbicide treatment and hand weeding in non-mulching. Also, no significant difference was obseorbed between napropamide and diphenamid treatment and hand weeding in clear P.E.-mulching.

  • PDF