• 제목/요약/키워드: hemispherical

검색결과 321건 처리시간 0.022초

극박판의 인장-드로잉 성형에서의 제품품질 비교 (Formability and Dimensional Characteristics of Stretch-Drawn Beryllium-Copper Sheet Products)

  • 이기성;정완진;김종호
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.357-361
    • /
    • 2011
  • A beryllium copper alloy(C1720) sheet was stretch-drawn using different processes. A hemispherical punch was first used and the forming behavior was examined. Then, cylindrical cups with a hemispherical head were produced by either one-step drawing or two-step forming(sequential stretch forming-drawing). The one-step drawing showed the better formability than two-step forming. However, the two-step forming was the superior process in terms of attaining shape accuracy.

반구형 소형 간극 내에서의 냉각과정에 관한 실험적 연구 (An Experimental Study on the Quenching Phenomena of Hemispherical Downward Facing Convex Surfaces with Narrow Gaps)

  • 하광순;박래준;김상백;조영로;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.447-452
    • /
    • 2001
  • Quenching phenomena of hemispherical downward facing convex surfaces with narrow gaps have been investigated experimentally. Experiments employed test sections having 1 and 2 mm in gap thickness and 1 atm in system pressure. From interpretations of the temperature and the heat flux history, it was found that the flooding inside the gap was restricted by CCFL phenomena and quenching process was propagated from lower to upper region of the internal copper shell. The ratio of the maximum heat fluxes at 1 mm to 2mm in gap thickness was the almost same that obtained by steady state experiments. The quenching scenario of the hemispherical downward facing surface with narrow gap has been suggested.

  • PDF

반구형 극소 드로인 제품의 두께분포 비교 (Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process)

  • 이기성;정효기;김종봉;김종호
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2011
  • Meso-scale or micro-scale forming of sheet metal parts has been recently considered as one of the important forming technologies with growing demand on meso/micro products for electric or medical devices. Experimental investigation on the cylindrical meso-cup drawing with hemispherical punch is carried out to examine the limit drawing ratio and thickness distribution of drawn cups. The working parameters chosen in this study are blank diameter, die-corner radius and blankholding force. It is found from the experiments that the limit drawing ratio of 2.4 can be achieved in the case of hemispherical cup drawing and uniform thickness distribution in wider region can be obtained compared with the results of conventional cup drawing.

저압 화학 증착법으로 제조된 Hemispherical Poly Si 박막의 미세구조 및 전기적 성질 (Microstructure and Electrical Property of Hemispherical Poly Si Film made by Low Pressure Chemical Vapor Deposition)

  • 라사균;김동원
    • 한국진공학회지
    • /
    • 제2권1호
    • /
    • pp.99-108
    • /
    • 1993
  • 저압화학증착법에 의해 제조된 hemispheircal 및 rugged Si 박막들은 64 Mbit DRAM 이상의 캐패시터에 사용하기 위해 개발되었다. 이 공정을 사용하므로써 종래에 사용되던 Si 전극의 평평한 표면이 hemispherical 혹은 rugged 박막 형태의 표면으로 변한다. 위와 같은 박막은 비정질 Si 표면에서 핵생성되며 Si 원자 확산에 의해 결정립들이 결정체로 성장한다. 화학증착의 변수, 열처리 및 in-situ doping process들은 hemispherical 및 rugged Si 박막의 미세구조에 영향을 준다. 동일 두께에서는 고온에서 이루어질 때 혹은 동일 온도일 경우에는 얇은 박막층일 때에 하부전극의 표면들이 rugged poly Si 형상을 나타내며 이렇게 됨으로써 유효면적은 2.1배로 증가한다. 이와 같은 캐패시터 유효면적 증가는 대체로 높은 신뢰성을 갖는 두꺼운 절연막을 사용하면서 stack 캐패시터 구조의 높이를 감소시킬 수 있다. 따라서 이러한 제조기술은 차세대 캐패시터에 적용될 수 있다.

  • PDF

결정 소성학을 이용한 반구 박판 성형공정의 전산모사 (Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity)

  • 심정길;금영탁
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

결정 소성학을 이용한 반구 박판 성형공정 전산모사 (Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity)

  • 심정길;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

정20면체기반 반구형 돔의 일사량과 효율적인 솔라패널에 관한 연구 (A Study on Solar Radiation and Efficient Solar Panel of Icosahedron-based Hemispherical Dome)

  • 손수덕;이돈우;이승재
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.53-64
    • /
    • 2016
  • Solar power is being spotlighted recently as a new energy source due to environmental problems and applications of solar power to curved structures are increasing. Solar panels installed on curved surfaces have different efficiencies depending on its position and the efficient positioning of solar panels plays a critical role in the design of solar power generation systems. In this study, the changing characteristics of solar irradiance were analyzed for hemispherical dome with a large curvature and the positioning of solar panels that can efficiently utilize solar energy was investigated. With an icosahedron-based hemispherical dome consisting of triangular elements as target model, a program for calculating solar irradiance using a normal vector of the solar module on each face was developed. Furthermore, the change of solar irradiance according to the sun's path was analyzed by time and season, and its effects on shades were also examined. From the analysis results, the effective positioning could be determined on the basis of the efficiency of the solar panels installed on the dome surfaces on solar irradiance.

Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells

  • Uysal, Mine U.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.849-862
    • /
    • 2016
  • This paper investigates the static buckling behaviours of Functionally Gradient Polymeric Material (FGPM) shells in the form of hemispherical segment. A new FGPM model based on experimental was considered to investigate the buckling problem of thin-walled spherical shells loaded by the external pressure. The spherical shells were formed by FGPM which was produced adding the two types of graphite powders into epoxy resin. The graphite powders were added to the epoxy resin as volume of 3, 6, 9, and 12%. Halpin-Tsai and Paul models were used to determine the elastic moduli of the parts of FGPM. The detailed static buckling analyses were performed by using finite element method. The influences of the types and volume of graphite powders on the buckling behaviour of the FGPM structures were investigated. The buckling loads of hemispherical FGPM shells based on Halpin-Tsai and Paul models were compared with those determined from the analytical solution of non-graphite condition existing for homogeneous material model. The comparisons between these material models showed that Paul model was overestimated. Besides, the critical buckling loads were predicted. The higher critical buckling loads were estimated for the PV60/65 graphite powder due to the compatible of the PV60/65 graphite powder with resin.

압력 용기 도옴의 형상 및 두께 변화에 따른 비선형 응력해석 (Nonlinear Stress Analysis of Pressure Vessel for Various Dome Shapes and Thicknesses)

  • 이영신;조원만;구송회
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2634-2645
    • /
    • 1993
  • Dome structures of pressure vessels subjected to internal pressure are usually analyzed by linear elastic theory assuming small deformation. Geometric and material nonlinear behaviors appear in actual dome structures because of large deformation and loads exceeding yield strength. In this paper, linear and nonlinear analyses were performed for various hemispherical and torispherical domes to check the effects of geometric and material nonliearity on the stress and displacement by the finite element method. The effect of the geometric nonlinearity decreased the stress levels a lot for very thin general torispherical domes, which enables more realistic and effective design. The material nonlinear effects are negligible for hemispherical and optimum torispherical domes, and those are large for most of the general torispherical domes.

Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer

  • Meroney, R.N.;Letchford, C.W.;Sarkar, P.P.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.347-358
    • /
    • 2002
  • Mean surface pressures and overall wind loads on hemispherical domes immersed in a boundary layer were obtained by numerical simulation. The effects of alternative turbulence models, Reynolds Number and surface roughness were examined and compared with earlier studies. Surface pressures on dual hemispherical domes were also calculated for three wind orientations ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$) to evaluate flow field interactions. Calculated values were compared to wind-tunnel measurements made in equivalent flow conditions.