• Title/Summary/Keyword: help nodes

Search Result 156, Processing Time 0.025 seconds

Query Optimization with Metadata Routing Tables on Nano-Q+ Sensor Network with Multiple Heterogeneous Sensors (다중 이기종 센서를 보유한 Nano-Q+ 기반 센서네트워크에서 메타데이타 라우팅 테이블을 이용한 질의 최적화)

  • Nam, Young-Kwang;Choe, Gui-Ja;Lee, Byoung-Dai;Kwak, Kwang-Woong;Lee, Kwang-Yong;Mah, Pyoung-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • In general, data communication among sensor nodes requires more energy than internal processing or sensing activities. In this paper, we propose a noble technique to reduce the number of packet transmissions necessary for sending/receiving queries/results among neighboring nodes with the help of context-aware routing tables. The important information maintained in the context-aware routing table is which physical properties can be measured by descendent nodes reachable from the current node. Based on the information, the node is able to eliminate unnecessary packet transmission by filtering out the child nodes for query dissemination or result relaying. The simulation results show that up to 80% of performance gains can be achieved with our technique.

Design of Cooperative M-1-1 Protocol Using OFDM to Increase Spectrum Utilization in WSN (무선 센서 네트워크의 주파수 사용 효율성 향상을 위한 OFDM을 사용한 협력적 M-1-1 프로토콜 설계)

  • Hwang, Yun-Kyeong;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.766-773
    • /
    • 2007
  • Conventional wireless sensor network(WSN) has limited power and bandwidth. In order to develop multimedia sensor technology, high data rate communication systems are required. Cooperative communication system can help to decrease power consumption through spatial diversity. In cooperative transmission, one partner node assists one sensor node to transmit their data to destination. Instead of using M partners for M sensor nodes, we propose 1 partner for M sensor nodes. Proposed protocol offers similar diversity order as conventional one with much less bandwidth and hardware. It is able to almost reduce scattered nodes interference using orthogonal sub-carriers. In addition, we examined a power allocation between sensor nodes and relay that optimize the system performance.

Distributed Computing Models for Wireless Sensor Networks (무선 센서 네트워크에서의 분산 컴퓨팅 모델)

  • Park, Chongmyung;Lee, Chungsan;Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.958-966
    • /
    • 2014
  • Wireless sensor networks offer a distributed processing environment. Many sensor nodes are deployed in fields that have limited resources such as computing power, network bandwidth, and electric power. The sensor nodes construct their own networks automatically, and the collected data are sent to the sink node. In these traditional wireless sensor networks, network congestion due to packet flooding through the networks shortens the network life time. Clustering or in-network technologies help reduce packet flooding in the networks. Many studies have been focused on saving energy in the sensor nodes because the limited available power leads to an important problem of extending the operation of sensor networks as long as possible. However, we focus on the execution time because clustering and local distributed processing already contribute to saving energy by local decision-making. In this paper, we present a cooperative processing model based on the processing timeline. Our processing model includes validation of the processing, prediction of the total execution time, and determination of the optimal number of processing nodes for distributed processing in wireless sensor networks. The experiments demonstrate the accuracy of the proposed model, and a case study shows that our model can be used for the distributed application.

A Novel K-hop Cluster-based Ad hoc Routing Scheme with Delegation Functions (위임 기능을 이용한 새로운 K-hop 클러스터 기반 Ad hoc 라우팅 구조)

  • Kim Tae-yeon;Wang Ki-cheoul
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.27-37
    • /
    • 2004
  • The existing ad hoc network protocols suffer the scalability problem due to the inherent characteristics of node mobility. Cluster-based routing protocols divide the member nodes into a set of clusters and perform a hierarchical routing between these clusters. This hierarchical feature help to improve the scalability of ad hoc network routing. However, previous k-hop cluster-based routing protocols face another problems, that is, control overhead of the cluster headers. This paper proposes a novel k-hop cluster-based routing scheme with delegation functions for mobile ad hoc networks. The scheme employs is based on tree topology to manage cluster members in effectively. The cluster headers do not manage the routing table for whole members, while the header keeps the routing table for its neighbor members and the member list for one hop over nodes within k-hop cluster. Then the in-between leveled nodes manage the nested nodes which is structured in the lower level. Therefore, the proposed mechanism can reduce some control overhead of the cluster leaders.

  • PDF

A Study on Knit Flare Skirts of Hem for 3D Virtual Clothing System - Focused on the Angle of Flare Skirt - (가상착의 시스템을 통한 니트 플레어스커트의 드레이프 형상에 관한 연구 - 각도에 따른 플레어스커트를 중심으로 -)

  • Ki, Hee-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.2
    • /
    • pp.77-89
    • /
    • 2013
  • This study investigated the formation of silhouette and hemline shape of knit flare skirts according to the properties of knit material through virtual clothing with a 3D virtual clothing system called i-Designer of Technoa, thus building a database of the property data of knit material to reduce the number of sample making steps repeated and implemented several times in the process of clothes making. The results would help to estimate a silhouette in advance, offer assistance to the development of original knit wear, and explore ways to provide basic data for the development of the knit industry of the nation. The investigator made 12 kinds of experimental clothes to the angles(width of skirt: $90^{\circ}$ and $180^{\circ}$), gauge(7G, 12G, and 15G), and grain directions(wale and bias direction) of experimental clothes for virtual clothing. The dynamic characteristics of knit skirt samples according to each gauge were measured with the KES-FB system. Draper shapes were analyzed with the sectional shape data of hemline based on i-Designer. As for the measurements of the sectional shape of hemline and the formation of silhouette, the number of nodes, the average height of node mountains and valleys, and the hemline width right and left and before and after increased at the angle of $180^{\circ}$ than $90^{\circ}$. As gauges multiplied, the number of nodes, and silhouette angle dropping. When considering grain directions, the number of nodes and silhouette index increased in the wale direction at the angle of $90^{\circ}$ with the number of nodes and silhouette angle increasing in the wale direction at the angle of $180^{\circ}$.

  • PDF

An Accuracy Enhancement for Anchor Free Location in Wiresless Sensor Network (무선 센서 네트워크의 고정 위치에 대한 정확도 향상)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Many researches have been focused on localization in WSNs. However, the solutions for localization in static WSN are hard to apply to the mobile WSN. The solutions for mobile WSN localization have the assumption that there are a significant number of anchor nodes in the networks. In the resource limited situation, these solutions are difficult in applying to the static and mobile mixed WSN. Without using the anchor nodes, a localization service cannot be provided in efficient, accurate and reliable way for mixed wireless sensor networks which have a combination of static nodes and mobile nodes. Also, accuracy is an important consideration for localization in the mixed wireless sensor networks. In this paper, we presented a method to satisfy the requests for the accuracy of the localization without anchor nodes in the wireless sensor networks. Hop coordinates measurements are used as an accurate method for anchor free localization. Compared to the other methods with the same data in the same category, this technique has better accuracy than other methods. Also, we applied a minimum spanning tree algorithm to satisfy the requests for the efficiency such as low communication and computational cost of the localization without anchor nodes in WSNs. The Java simulation results show the correction of the suggested approach in a qualitative way and help to understand the performance in different placements.

A Study on Particle Filter based on KLD-Resampling for Wireless Patient Tracking

  • Ly-Tu, Nga;Le-Tien, Thuong;Mai, Linh
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • In this paper, we consider a typical health care system via the help of Wireless Sensor Network (WSN) for wireless patient tracking. The wireless patient tracking module of this system performs localization out of samples of Received Signal Strength (RSS) variations and tracking through a Particle Filter (PF) for WSN assisted by multiple transmit-power information. We propose a modified PF, Kullback-Leibler Distance (KLD)-resampling PF, to ameliorate the effect of RSS variations by generating a sample set near the high-likelihood region for improving the wireless patient tracking. The key idea of this method is to approximate a discrete distribution with an upper bound error on the KLD for reducing both location error and the number of particles used. To determine this bound error, an optimal algorithm is proposed based on the maximum gap error between the proposal and Sampling Important Resampling (SIR) algorithms. By setting up these values, a number of simulations using the health care system's data sets which contains the real RSSI measurements to evaluate the location error in term of various power levels and density nodes for all methods. Finally, we point out the effect of different power levels vs. different density nodes for the wireless patient tracking.

A Survey on Communication Protocols for Wireless Sensor Networks

  • Jang, Ingook;Pyeon, Dohoo;Kim, Sunwoo;Yoon, Hyunsoo
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.231-241
    • /
    • 2013
  • Improvements in wireless sensor network (WSN) technology have resulted in a large number of applications. WSNs have been mainly used for monitoring applications, but they are also applicable to target tracking, health care, and monitoring with multimedia data. Nodes are generally deployed in environments where the exhausted batteries of sensor nodes are difficult to charge or replace. The primary goal of communication protocols in WSNs is to maximize energy efficiency in order to prolong network lifetime. In this paper, various medium access control (MAC) protocols for synchronous/asynchronous and single/multi-channel WSNs are investigated. Single-channel MAC protocols are categorized into synchronous and asynchronous approaches, and the advantages and disadvantages of each protocol are presented. The different features required in multi-channel WSNs compared to single-channel WSNs are also investigated, and surveys on multi-channel MAC protocols proposed for WSNs are provided. Then, existing broadcast schemes in such MAC protocols and efficient multi-hop broadcast protocols proposed for WSNs are provided. The limitations and challenges in many communication protocols according to this survey are pointed out, which will help future researches on the design of communication protocols for WSNs.

Comparison Study of Helper Node Selection Schemes of Cooperative Communications at Ad Hoc Networks (애드혹 네트워크에서 협력통신을 위한 도움노드 선정방법 비교연구)

  • Jang, Jae-Shin
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2012
  • In this paper, a study on finding an appropriate helper node that can help increase effective frame transmission rate for cooperative communications at ad hoc networks is carried out. Those researches from reference use the reactive helper node selection mechanism which starts its role after exchanging RTS and CTS frames between source and destination nodes, and are implemented into our simulator for performance comparison. System throughput and average channel access delay are used for performance measures and all communicating nodes are assumed to move independently within the communication range. It is anticipated that this research result can be used as basic information for designing a new efficient helper node selection scheme.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.