• Title/Summary/Keyword: hellinger-reissner variational principle

Search Result 22, Processing Time 0.015 seconds

Free Vibration Analysis of Arches Using Higher-Order Mixed Curved Beam Elements (고차 혼합 곡선보 요소에 의한 아치의 자유진동해석)

  • Park Yong Kuk;Kim Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.18-25
    • /
    • 2006
  • The purpose of this research work is to demonstrate a successful application of hybrid-mixed formulation and nodeless degrees of freedom in developing a very accurate in-plane curved beam element for free vibration analysis. To resolve the numerical difficulties due to the spurious constraints, the present element, based on the Hellinger-Reissner variational principle and considering the effect of shear deformation, employed consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees. The stress parameters were eliminated by the stationary condition, and the nodeless degrees were condensed by Guyan Reduction. Several numerical examples indicated that the property of the mass matrix as well as that of the stiffness matrix have a great effect on the numerical performance. The element with consistent mass matrix produced best results on convergence and accuracy in the numerical analysis of Eigenvalue problems. Also, the higher-order mixed curved beam element showed a superior numerical behavior for the free vibration analyses.

Effective modeling of beams with shear deformations on elastic foundation

  • Gendy, A.S.;Saleeb, A.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.607-622
    • /
    • 1999
  • Being a significant mode of deformation, shear effect in addition to the other modes of stretching and bending have been considered to develop two finite element models for the analysis of beams on elastic foundation. The first beam model is developed utilizing the differential-equation approach; in which the complex variables obtained from the solution of the differential equations are used as interpolation functions for the displacement field in this beam element. A single element is sufficient to exactly represent a continuous part of a beam on Winkler foundation for cases involving end-loadings, thus providing a benchmark solution to validate the other model developed. The second beam model is developed utilizing the hybrid-mixed formulation, i.e., Hellinger-Reissner variational principle; in which both displacement and stress fields for the beam as well as the foundation are approxmated separately in order to eliminate the well-known phenomenon of shear locking, as well as the newly-identified problem of "foundation-locking" that can arise in cases involving foundations with extreme rigidities. This latter model is versatile and indented for utilization in general applications; i.e., for thin-thick beams, general loadings, and a wide variation of the underlying foundation rigidity with respect to beam stiffness. A set of numerical examples are given to demonstrate and assess the performance of the developed beam models in practical applications involving shear deformation effect.