• Title/Summary/Keyword: helium partial pressure

Search Result 10, Processing Time 0.039 seconds

Subcooling of cryogenic liquid by diffusion-driven evaporation (확산동기 증발에 의한 극저온 액체 과냉각)

  • Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.72-82
    • /
    • 2007
  • This paper relates to reducing the temperature of a cryogenic liquid by contacting it with gas bubbles, which can be characterized by diffusion-driven evaporative cooling, The characteristic of diffusion-driven evaporative cooling is thoroughly examined by theoretical. analytical and experimental methods specifically for the case of helium injection into liquid oxygen. The results reveal that if the gaseous oxygen partial pressure in helium bubbles is lower than the liquid oxygen vapor pressure, cooling occurs autonomously due to diffusion mass transfer. The method of lowering the injected helium temperature turns out to be very effective for cooling purpose.

Development and Test results of the Dielectric Evaluation System for a Helium Gas Cooled HTS Cable (헬륨가스 냉각 고온초전도 케이블의 절연특성 평가 시스템 개발 및 성능평가)

  • Kwag, Dong-Soon;Rodrigo, Horatio
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • The novel type of cable under consideration is cooled by gaseous Helium at elevated pressure. Helium is known for having poor electric breakdown strength; therefore the dielectric capabilities of this type of cable must be tested under conditions similar to the envisaged operation. In order to study the dielectric performance we have designed and built a novel high pressure cryostat rated at 2.17 MPa which has been used for testing model cables of lengths of up to 1 m. The cryostat is an open system where the gas is not re-circulated. This allows maintaining a high purity of the gas. The target temperature range is between 40 K and 70 K. This substantially increases the critical current density of the HTS compared to 77 K, which is the typical temperature of cables cooled by liquid nitrogen. The cryostat presented allows for adjusting the temperature and keeping it constant for the time necessary to run a complete dielectric characterization test. We give a detailed description of the cryostat. Measurements of partial discharge inception voltages as well as the temperature distribution along the model cables as a function of time are presented.

Evaluation Method on Destruction and Removal Efficiency of Perfluorocompounds from Semiconductor and Display Manufacturing

  • Lee, Jee-Yon;Lee, Jin-Bok;Moon, Dong-Min;Souk, Jun-Hyung;Lee, Seung-Yeon;Kim, Jin-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1383-1388
    • /
    • 2007
  • Recently, the semiconductor and display industries have tried to reduce the emissions of perfluorocompounds (PFCs) from the globally environmental regulation. Total amount of PFC emission can be calculated from the flow rate and the partial pressures of PFCs. For the precise measurement of PFC emission amount, the mass flow controlled helium gas was continuously injected into the equipment of which scrubber efficiency is being measured. The partial pressures of PFCs and helium were accurately measured using a mass spectrometer in each sample extracted from inlet and outlet of the scrubber system. The flow rates are calculated from the partial pressures of helium and also, PFC destruction and removal efficiency (DRE) of the scrubber is calculated from the partial pressure of PFC and the flow rate. Under this method, the relative expanded uncertainties of the flow rate and the partial pressures of PFCs are ± 2% (k = 2) in case the concentrations of NF3 and SF6 are as low as 100 μmol/mol.

Consideration on the helium leak detection in a large vacuum chamber (대형 진공용기의 헬륨 누설검사 방법에 대한 고찰)

  • In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • Nowadays, in our country, large vacuum chambers for huge experimental facilities such as the tokamak fusion device, high power neural beam test stand, and space simulator have been constructed. In such a vacuum chamber of very large size, it is quite complicate to check on leakage quantitatively, while the probability of a leak is relatively high. To investigate the feasibility of applying reliably a helium leak detection to the huge vacuum chambers, and to find a reasonable methodology of choosing an optimum set-up for leak detection, several virtual constructions of the leak detection system have been analyzed by calculating the pressure distribution in the system and the helium level in the sensor part.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃ (950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화)

  • Kim, Dae-Jong;Kim, Weon-Ju;Jang, Ji-Eun;Yoon, Soon-Gil;Kim, Dong-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃ (니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations (산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동)

  • Koo, Jahyun;Kim, Daejong;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.

Study of Counter Diffusion in Isostatic Permeameters

  • Bianchi, F.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • The counter-diffusion of two gaseous substances permeating a polymeric membrane has been investigated both experimentally and theoretically. The aim of the study was to find mutual effects, if any, that could influence the permeability and diffusivity data. The experimental data were obtained with an isostatic permeameter operating at ambient pressure and 303 K: helium, nitrogen, carbon dioxide methane were used as permeating gas at different partial pressure; helium or nitrogen as equilibrating or carrier gas. No evident mutual effect of the counter-diffusing gas was observed. The theoretical analysis gave some insight into the phenomena and it was concluded that at near-atmospheric pressures, and in the absence of swelling phenomena no mutual interaction exists. On a theoretical basis any mutual interaction between diffusing and counter-diffusing gases could only occur: i) at high pressures , when the free movement of permeating gas molecules within the polymer is hindered by the counter-diffusing gas; ii) when a large part of the free volume fraction is occupied by the counter--diffusing gas; iii) swelling phenomena modify the structure and free volume fraction of the polymer.

  • PDF

Experimental Study on the Interference of Water Vapor on the Chemical Ionization of OH by Sulfur Hexafluoride Ion

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.120-123
    • /
    • 2014
  • The interference of water vapor on the chemical ionization (CI) of hydroxyl radicals (OH) by sulfur hexafluoride ion ($SF_6{^-}$) was investigated using a flow tube system coupled to a high-pressure CI mass spectrometer. Water vapor, which is required to study heterogeneous reactions of OH under real tropospheric conditions, transforms the reagent ion $SF_6{^-}$ into $SF_4O^-$ and $F^-(HF)_n$, resulting in a substantial loss in CI sensitivity. Therefore, under humid conditions, peaks corresponding to OH are drastically diminished, while those corresponding to OH-water complex ions ($[OH(H_2O)_n]^-$) are enhanced. $[OH(H_2O)_3]^-$ was observed as the major OH species. The obsercation of $[OH(H_2O)_n]^-$ by isolating humid conditions to the CI region and preliminary ab initio calculations suggested that $[OH(H_2O)_n]^-$ ions were produced from reactions between OH ions ($OH^-$) and water molecules. An additional helium buffer flow introduced into the CI region reduced loss of the reagent ion and resulted in a partial recovery of OH peak intensities under humid conditions.