• Title/Summary/Keyword: helicopter control

Search Result 278, Processing Time 0.029 seconds

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

Fuzzy Control of Data Link Antenna Control System for Moving Vehicles

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.525-528
    • /
    • 2005
  • The tracking antenna system must be always pointed to target moving vehicle. Especially, for an antenna mounted on a movable vehicle, it needs the stabilized antenna system. In this paper, two types of fuzzy controller were derived and applied to a data link antenna system and the altitude control of unmanned helicopter, respectively. A simplified Fuzzy-PID controller was designed for 2-axes antenna stabilization and tracking system and the performance was verified by simulations and experiments. Computer simulations were performed by Matlab and SIMULINK. A 2-Axes antenna (SeaTel 1898 model) was selected as test platform of this research. The antenna was modified by using two Blushless Direct Current motors and an embedded DSP controller. To verify the performance of designed antenna servo control system, the performance of the conventional PID controller and that of the Fuzzy-PID controller, designed by the same PID control gains, were compared.

  • PDF

Experimental Studies of a Time-delayed Controller to Stabilize Image Stabilization System (영상 안정화 장치의 안정화를 위한 시간지연 제어기 설계 및 실험)

  • Park, Ju-Kwang;Bae, Young-Gul;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • In this paper, the stabilization problem of the image stabilization system(ISS) that captures the image of an object on the ground by remote sensing is considered. The ISS should be stable under outer disturbance such as helicopter vibration for tracking line of sight. Although PID controllers are optimized for the system, disturbances cause the instability of the system. To minimize the effect of the disturbance, the time-delayed control method is used to compensate for uncertainties. Simulation studies are performed and experiments are conducted to confirm the simulation results. Performances of PID control and time-delayed control methods are compared.

Secure methodology of the Autocode integrity for the Helicopter Fly-By-Wire Control Law using formal verification tool (정형검증 도구를 활용한 Fly-By-Wire 헬리콥터 비행제어법칙 자동코드 무결성 확보 방안)

  • An, Seong-Jun;Cho, In-Je;Kang, Hye-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.398-405
    • /
    • 2014
  • Recently the embedded software has been widely applied to the safety-critical systems in aviation and defense industries, therefore, the higher level of reliability, availability and fault tolerance has become a key factor for its implementation into the systems. The integrity of the software can be verified using the static analysis tools. And recent developed static analysis tool can evaluate code integrity through the mathematical analysis method. In this paper we detect the autocode error and violation of coding rules using the formal verification tool, Polyspace(R). And the fundamental errors on the flight control law model have been detected and corrected using the formal verification results. As a result of verification process, FBW helicopter control law autocode can ensure code integrity.

Flight Dynamics Mathematical Modeling of Quad Tilt Rotor UAM for Real-Time Simulation (쿼드 틸트 로터 UAM 실시간 비행 시뮬레이션을 위한 비행역학 수학적 모델링)

  • Hyunseo Kang;Nahyeon Roh;Do-young Kim;Min-jun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.18-26
    • /
    • 2024
  • This paper describes the results of a study on Generic Quad Tilt Rotor UAM aircraft, focusing on nonlinear mathematical modeling and the development of real-time simulation software. In this research, we designed a configuration for a Generic Quad Tilt Rotor eVTOL UAM aircraft based on NASA's UAM mission requirements. We modeled the aerodynamics using a database, the prop-rotor dynamics with a thrust database, and included a ground reaction and atmospheric model in the flight model. We defined the control concept for various modes(helicopter mode, transition mode, and airplane mode), derived tilt angle corridors, and formulated flight control requirements. The resultant real-time flight simulation software not only performs trim analysis for Tilt Rotor UAM aircraft but also predicts handling qualities, optimizes tilt angle scheduling based on dynamic characteristics, designs and validates flight control laws for helicopter, transition, and airplane modes, and facilitates flight training through simulator integration.

Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion (헬리콥터 능동진동제어시스템의 수리온 적용 및 성능 분석)

  • Kim, Do-Hyung;Kim, Tae-Joo;Paek, Seung-Kil;Kwak, Dong-Il;Jung, Se-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • The most decisive factor of major sources of a helicopter is the main rotor system and the rotor-induced vibration is one of the technical challenges which should be resolved to ensure comfort for crews and passengers. Passive vibration reduction devices are adopted in conventional helicopters and several types of passive devices are also used in Surion. In recent years, foreign helicopter manufactures have increasingly applied the application of AVCS (active vibration control system) because of their superior performance with lower weight compared to passive device. In addition to weight reduction, AVCS has advantages maintaining its performance over aircraft configuration changes and flight condition changes. The technology demonstration program was performed in order to validate the performance of AVCS when applied to Surion, and optimization process for finding optimal configuration of sensors and actuators. Optimal configuration was produced using ground and flight test data, and its performance was evaluated and compared with flight test result.

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Establishment of Rotor Speed Operating Limitation for Medium Class Utility Rotorcraft (중형 기동 회전익기 로터회전수 제한 수립)

  • Park, Jonghoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.26-32
    • /
    • 2013
  • The rotorcraft makes lift and control forces by the rotor thrust. At the development phase of the rotorcraft, the operational limitations have to be established. And it shall be demonstrated to operate the rotorcraft safely within the limitations. This paper introduces establishment and evaluation results of operational rotor speed limitations for the medium class utility rotorcraft. And it shows the follow-up activities after design changes of rotor speed indicators and aural warning systems for implementing the rotor speed limitations.

Image-Based Ego-Motion Detect of the Unmanned Helicopter using Adaptive weighting (적응형 가중치를 사용한 영상기반 무인 헬리콥터의 Ego-Motion)

  • Chon, Jea-Choon;Chae, Hee-Sung;Shin, Chang-Wan;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.653-655
    • /
    • 1999
  • 카메라 영상을 통하여 무인 헬리콥터 동작을 추정하기 위해 적응형 가중치를 사용한 새로운 Ego-Motion을 검출 기법을 제안하였다. 무인 헬리콥터 동적 특성은 비선형이며, 심한 진동 발생으로 영상 번짐(blur) 현상이 나타나기 때문에 상관 값만을 고려한 정합 방법으로는 빈번히 오차가 발생한다. 본 논문에서는 가속도, 각 가속도 및 제어입력 값에 의한 위치 추정 값과 상관 값 및 에지 강도를 가중치에 의해 융합하여 정확한 Ego-Motion을 계산할 수 있는 기법을 제안하였다. 또한 무인 헬리콥터의 가속도, 각 가속도, 상하 속도에 따라서 영상의 번짐 정도가 달라 이들 같이 크면 위치오차에 가중을 크게 주고, 작으면 상관 값에 가중치를 적게 주는 적응형 가중치 결정 알고리즘을 적용하였다. 제안한 적응형 가중치 기법을 무인 헬리콥터에 실험한 결과 카메라에 포착된 영상에 의해 무인헬기의 동작을 정확히 추정 할 수 있었다.

  • PDF