• Title/Summary/Keyword: height resolution

Search Result 324, Processing Time 0.024 seconds

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery (위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가)

  • 이효성;송정헌;김용일;안기원
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • In this study, for efficient replacement of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which Is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

Characteristic Analysis of High Speed Inkjet Printing Head for Digital Textile Printing (디지털날염용 고속 구동형 잉크젯 프린팅 헤드의 특성해석)

  • Lee, Duck-Gyu;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.421-426
    • /
    • 2018
  • To develop a piezoelectric inkjet printhead for high-resolution and high-speed printing, we studied the characteristics of an inkjet printhead by analyzing the major design parameters. An analytical model for the inkjet printhead was established, and numerical analysis of the coupled first-order differential equation for the defined state variables was performed using state equations. To design the dimension of the inkjet printhead with a driving frequency of 100 kHz, the characteristics of the flow rate and discharge pressure of the nozzle were analyzed with respect to design variables of the flow chamber, effective sound wave velocity, driving voltage, and voltage waveform. It was predicted that the change in the height of the flow chamber does not significantly affect the Helmholtz resonance frequency and discharge speed of the nozzle. From the analysis of change in flow chamber width, it is observed that as the width of the flow chamber increases, the ejection speed greatly increases and the Helmholtz resonance frequency decreases considerably, thereby substantially affecting the performance of the inkjet printhead.

A Study on the Shape Measurement of Glass in the Back Light Unit(BLU) (BLU의 Glass 형상 측정 연구)

  • Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.211-218
    • /
    • 2019
  • All display devices require more wider, higher resolution and precision owing to advanced display technology. As the display pannels become wider, BLU also become wider and brighter. The upper glass of the BLU must achieve the constant of its shape and thickness and have uniform brightness. These deformity cause the display quality to make less. Thus high performance of the BLU shape's height and thickness measurement is inevitable. The high speed and precision measurement system will be proposed. To minimize the measurement error we can achieve the desirous results by 2 dividing intervals with different moving velocity on measuring.

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Evaluation of Utilization through Various Accuracy Analysis of Drone Photogrammetry (드론사진측량의 다양한 정확도 분석을 통한 활용성 평가)

  • Doo-Pyo Kim;Hye-Won Choi;Jae-Ha Kwak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.121-131
    • /
    • 2023
  • Although the utilization of drone photogrammetry that can generate spatial information using ultra-high-resolution images is increasing in the civil engineering and construction fields, analysis of areas that can be used is insufficient. Therefore, this study attempted to determine how far drone photogrammetry can be used in the civil engineering and construction fields by applying a detailed analysis method. The status map and cross-sectional map were actually vectorized using drone photogrammetry outcomes, compared and analyzed with the results acquired in the field, and the qualitative aspects of traffic safety facilities were analyzed to determine their usability. As a result, the accuracy of the plane position using drone photogrammetry was reliable, but the height accuracy was difficult to trust. Accordingly, although there is a possibility of preparing a status map, the use of it in areas requiring high accuracy such as cross-sectional plans was limited, and it is believed that it can be used in the construction management field where qualitative analysis is conducted.

Development of a diverging collimator for environmental radiation monitoring in the industrial fields

  • Dong-Hee Han;Seung-Jae Lee;Jang-Oh Kim ;Da-Eun Kwon;Hak-Jae Lee ;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4679-4683
    • /
    • 2022
  • Environmental radiation monitoring is required to protect from the effects of radiation in industrial fields such as nuclear power plant (NPP) monitoring, and various gamma camera systems are being developed. The purpose of this study is to optimize parameters of a diverging collimator composed of pure tungsten for compactness and lightness through Monte Carlo simulation. We conducted the performance evaluation based on spatial resolution and signal-to-noise ratio for point source and obtained gamma images and profiles. As a result, optimization was determined at a collimator height of 60.0 mm, a hole size of 1.5 mm, and a septal thickness of 1.0 mm. Also, the full-width-at-half-maximum was 3.5 mm and the signal-to-noise ratio was 53.5. This study proposes a compact 45° diverging collimator structure that can quickly and accurately identify the location of the source for radiation monitoring.

Portable multi-channel analyzer for embedded gamma radiation in an ARM Cortex-M7 MCU

  • Angel Garcia-Durana;Antonio Baltazar-Raigosa;Carina Oliva Torres-Cortes;Claudia Angelica Marquez-Mata
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1836-1844
    • /
    • 2024
  • The use of digital systems in radiation science has been increased last years in the different knowledge areas, as a detectors, spectrometry, spectroscopy, simulation, etc. This manuscript presents the design and implementation of a low-cost, fully portable multi-channel analyzer for nuclear spectrometry (in situ). The development is based on a 32-bit microcontroller with ARM Cortex-M7, this design is able to digitize and analyze pulses from a radiation detector without the need to transform the input signal with some filter, obtains the maximum height of each of the digitized pulses, segmenting the information into channels to form a histogram and visualizing the LCD screen incorporated in the system. A continuous digitization methodology was used, which is in charge of the DMA and an ADC with a resolution of 12 bits at a speed of 3.6 MSPS. The system has a compact design and can open and save spectra in an SD memory built into the system. The MCA in MCU was tested with a NaI(Tl) Scintillation radiation detector, which allowed us to determine that the spectra obtained are similar compared to commercial MCA's. The results obtained show that the MCA in MCU is efficient for nuclear spectrometry, in addition to being very economical and low power consumption.