• Title/Summary/Keyword: height control system

Search Result 603, Processing Time 0.035 seconds

PID and Adaptive Controllers for a Transportation Mobile Robot with Fork-Type Lifter

  • Nguyen, Van Vui;Tran, Huu Luat;Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.216-223
    • /
    • 2016
  • This paper proposes a new controller design method for a fork-type lifter (FTL) of a transportation mobile robot. The transportation robot needs to pick up a package from a stack on a storage shelf and move on by a planned path in a logistics center environment. The position of the storage shelf is recognized by reading a QR code on the floor, and using this position, the robot can move to reach the storage shelf and pick up the package. PID controllers and an adaptive controller are designed to control the velocity of two wheels and the position of the FTL. An adaptive controller for the lifter is designed to elevate up and down on a slideway to the correct height position of the package on the stack of the storage shelf. The simulation results show that the PID controllers can respond smoothly to the desired angular velocity and the adaptive controller can adapt quickly and correctly to the desired height.

Performance of MPS Bacterial Inoculation in Two Consecutive Growth of Maize Plants

  • Park, Myung-Su;Gadagi, Ravi;Singvilay, Olayvanh;Kim, Chung-Woo;Chung, Hee-Kyung;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.335-339
    • /
    • 2001
  • Two successive in vitro experiments were carried out to examine the effect of MPS bacterial inoculation on growth, and nitrogen and phosphorus accumulation of maize plants under greenhouse condition in the same soil. There were four treatments, uninoculated control and three phosphate solubilizing bacterial inoculations, viz., Pseudomonas striata, Burkholderia cepacia and Serratia marcescens. The inoculated plants showed the higher plant height, total dry mass, nitrogen and phosphorus accumulation when compared to uninoculated control plants in both experiments. In the combined data analysis from two experiments, the plants inoculated with P. striata and B. cepacia showed significantly higher plant height, total dry mass and P accumulation when compared to S. marcescens inoculated plant and uninoculated control plants. The P. striata and B. cepacia inoculation enhanced total dry matter accumulation by 14% and phosphorus accumulation by 25% over the uninoculated control plants. The nitrogen and phosphorus concentration of maize plants were also increased due to MPS bacterial inoculation, however, the effect was not significant.

  • PDF

Posture control of buoyancy sculptures using drone technology (드론 기술을 이용한 부력 조형물의 자세 제어)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The floating sculptures in the form of ad-ballon commonly used ropes in order to hold on. Relatively air flow is much less indoor than outdoor. Users of buoyancy sculptures hope to be able to maintain their desired posture without being fixed. This study applied drone technology to buoyancy sculptures. The drones can be moved vertically and horizontally, and the posture can be maintained, so buoyancy sculptures are easy to apply. Therefore, we have studied the control system of buoyancy sculpture using drone technology. Also, a control system that can maintain the desired posture at a constant height was studied. The overall shape was a light fiber material and helium gas for zero buoyancy to support the sculpture. The system configuration was STM32F103CB from ARM. In addition, the gyro and acceleration, geomagnetic sensors and motors are composed of small and medium size BLDC motors. The scheduling of the control system in the configuration of the control device was carefully considered. Because the role of the whole component becomes very important. The communication between the components is divided into the sensor fusion and the interface communication with the whole controller. Each communication technology is designed to expand. This study was implemented to actively respond from the viewpoint of posture control using the drone technology.

Growth and Development of Platycodon grandiflorus under Sensor-based Soil Moisture Control on Open Farmland and Pot Conditions

  • Lee, Ye-Jin;Kim, Kyeong-Soo;Lim, So-Hee;Yu, Young-Beob;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.608-615
    • /
    • 2021
  • Soil moisture control system including soil sensing and automatic water supply chain was constructed on open farmland and pot conditions. Soil moisture was controlled by the system showing over the soil moisture contents except 40% treatment. EC was gradually decreased by increasing cultivation days. On applying this system to control soil moisture, the growth and development characters of the bellflower were improved compared with control, cultivation without the automatic irrigation. Of the growth and development characters, plant height with water treatments was higher than that of control in 1st-year plants. Moreover, numbers of branch were increased by the increased soil moisture on farmland and pot condition. Capsule numbers for seed were best at 20%, 30% soil moisture treatment in 1st-year plants, and 20% to 50% treatment in 2nd-year plants. The construction of automatic soil moisture control system provide fundamental data for plant growth and development on open farmland soil condition.

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

A study on rating system of some shrubs for pedestrian control ; concentrate upon the density of branch (몇몇 조경용 관목의 보행제어 효과에 관한 연구 -관목개체의 수지밀도를 중심으로-)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.91-100
    • /
    • 1998
  • This paper is to study on rating system of some shrubs for pedestrian control with concentrate upon the density of branch. It was usd that Hibiscus syricacus L., Spiraea prunifolia var. simpliciflora Nak, Ligustrum obtusifolium S. et Z., Callicarpa dichotoma Raeusch., Rhoododendron mucrionulatum Turcz., Syringa vulgaris L., Weigela subsessilis L. H. Bailey, Cercis chinensis bunge, Forsythia koreana Nak., Euonymus alatus Sieb, Chaenomeles speciosa Nak., orbaria sorbifolia var. stellipila Max., Deutzia parviflora Bunge, Kerria japonica De Candolle, Prunus tomentosa Thunberg ex Murray, Purunus grandulosa for. albiplena Koehne. Shrubs are invesitgated ito the density of branch, the power of sprout, height, a rate of growth, hardness of naturalizaton, crown width and existence of thorns. Shrubs belonged to high group of rating system for pedestrian control were Euonymus alatus Sieb, Purunus grandulosa for. albiplena Koehne, Chaenomeles speciosa Nak., Spiraea prunifolia var. simpliciflora Nak., Prunus tomentosa Thunberg ex Murray, Rhododendron mucronulatum Turcz., Hibiscus syricacus L., Ligustrum obtusifolium S. et Z., Syringa vulgaris L., Weigela subsessilis L.H.Bailey.

  • PDF

Development of Automatic Filet Welding Torch System with High Speed Rotating Arc Sensor

  • Lee, W.K.;Lee, G.Y.;Kim, J.H.;Kim, S.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.1-94
    • /
    • 2001
  • Arc sensor gives important groove information during welding. Automatic seam tracking control system with arc sensor has significant characteristics such that bead formation is given as decentralization of penetration and formation of concave bead profile and that a turning point of transverse weaving with constant arc length control is decided whether or not torch height reaches to a specified setting level. Furthermore, the rotating action of the arc prevents hanging of weld bead and forms flat bead surface under high speed welding condition. The variation of groove and deposition area can be detected from the trace of weaving. The area and width of weaving trace has close correlation with the area of groove and deposition. In this paper, main object of this system is to realize an adaptive microprocessor based controller ...

  • PDF

Study on Development of Virtual Components for Active Air Suspension System Based on HILS for Commercial Vehicle (상용차용 HILS기반 능동형 공기현가 시스템의 가상 Components 개발에 관한 연구)

  • Ko, Youngjin;Park, Kyungmin;Baek, Ilhyun;Kim, Geunmo;Lee, Jaegyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.26-36
    • /
    • 2013
  • Purpose of this study is to develop virtual components and environment for developing a controller of an Active Air Suspension System in laboratory that slough off existing development environment using real vehicle test. This paper presents an air spring modeling and analysis of air suspension system for a commercial vehicle. Preferentially, It was performed vehicle test for pneumatic system and an air spring for characteristic analysis of system. Each component of an air spring suspension system was developed through emulations and modeling of system for pressure and height sensors in the basis on test results in SILS environment. Non-linear characteristics of air spring are accounted for using the measured data. Also, pressure and volume relations for vehicle hight control is considered. After performance verification of virtual model was performed, we developed virtual environment based on HILS for an Active Air Suspension System. We studied estimation and verification technology for control algorithm that developed.

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).