• Title/Summary/Keyword: height and horizontal angle

Search Result 171, Processing Time 0.026 seconds

Comparison of the Pushing Forces between Horizontal Handle and Vertical Handle According to the Handle Height and Distance (수직형 손잡이와 수평형 손잡이의 높이와 간격에 따른 미는 힘 비교)

  • Song, Young-Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2014
  • Manual materials handling tasks are the main risk factors for the work-related musculoskeletal disorders. Many assistant tools for manual materials handling are being used in various kind of industries. One of them is a 4-wheeled cart which is widely used in manufacturing factories, hospitals, etc. The major force required to control the 4-wheeled cart is pushing and pulling. There are two types of handles being used for the 4-wheeled cart : vertical type (two vertical handles), and horizontal type (one horizontal handle). This study tried to investigate the pushing forces and subjective discomforts (hand/writst, shoulder, low back, and overall) of the two handle types with different handle height and distance conditions. Twelve healthy male students (mean age = 23.4 years) participated in the experiment. The independent variables were handle angle (horizontal, vertical), handle height (low, medium, high), and handle distance (narrow, medium, wide). The full factorial design was used for the experiment and the maximum pushing forces were measured in 18 different conditions ($2{\times}3{\times}3$). Analysis of variance (ANOVA) procedure was conducted to test the effects of the independent variables on the pushing force and discomfort levels. Handle height and angle were found to be the critical design factors that affect the maximal pushing forces and subjective discomfort. In the middle height, subjects exerted higher pushing forces, and experience lower discomfort levels compared to the high, and low height. There was no statistical influence of the handle distance to the pushing forces and subjective discomfort levels. It was found out that the effects of the handle angle (horizontal and vertical) on both pushing force and subjective discomfort were statistically significant (p < 0.05). The vertical handle revealed higher pushing force and lower discomfort level than the horizontal handle. The reason for that was thought to be the different postures of the hand when grasping the handles. The horizontal handle induced pronaton of the hand and made hand posture more deviated from the neutral position.

Mechanical principles and motions for increasing the height of Fosbury flop (높이뛰기의 도약 높이를 증가시키는 역학적 원리와 동작)

  • Sung, Rak-Jun
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.1-14
    • /
    • 2003
  • This study was conducted to investigate the principles and motions for increasing the jumping height of Fosbury Flop. The subjects were three male jumpers who were former Korean national team players. Their jumping motions were analyzed using the DLT method of three-dimensional cinematography. The conclusions were as follows. 1. The horizontal velocity of approach run and decreasing of this velocity during the take off phase were increased as the jumping height was increased. Therefore, in order to increase the jumping height, the horizontal velocity of approachrun should be increased and decreased properly during the take-off phase. The average height of the analyzed Dials was 2.15m. The average horizontal velocity of approachrun was 7.49m/s and decreased to 4.16m/s at the instance of take-off. 2. The vertical velocity of the center of gravity was increased as the ascending height of the center of gravity during the take-off phase was increased. Therefore, the center of gravity at the instant of touch down should be lowered. This could be possible by increasing the length of the last stride and the backward lean angle of the body. The average length of the last stride was 111.1% of the standing height, the average height of the center of gravity was 46.6% of the standing height and the average backward lean angle of the body was 40.3 degrees.

Effects of the Handle Width, Height and Horizontal Angle on the Pushing, Lifting and Twisting Forces Required for the Handling of Barrows (손잡이 너비, 높이, 수평 각도가 손수레 운전에 필요한 밀기, 들기, 회전 힘에 미치는 영향)

  • Kim, Kyoung-Ah;Lee, Ho-Cheol;Song, Young-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • This study evaluated the effects of the handle width(shoulder width, 1.25${\times}$shoulder width, 1.5${\times}$shoulder width), height(3 levels : knee, medium, knuckle) and horizontal angle($0^{\circ}$, $10^{\circ}$) on the pushing, lifting, and twisting strengths which were required for carrying single or two wheel barrows. Twelve healthy college students(male) participated in the experiment. In each experimental condition($3{\times}3{\times}2$=18), the subjects exerted three forces(pushing, lifting, and twisting clockwise). The experimental conditions and three forces were tested in random order, and a minimum 2 minutes of rest was provided between exertions. Results showed that the mean and maximum pushing forces showed greater values when the horizontal angle was $0^{\circ}$ than $10^{\circ}$(p=0.016). However, the three independent variables had no statistically significant effects on the lifting forces(p>0.1). The mean and maximum twisting forces increased as the handle width became larger(p<0.05). Also, there was a marginal effect of the horizontal angle(p=0.065) on the twisting force. From the results of this study, the horizontal angle of $0^{\circ}$ and the wider handle width were suggested for the design of single-wheel barrows.

Evaluation of the Pushing, Lifting and Twisting Forces According to the Handle Design Variables of the Single-Wheel Barrows (외륜 수레 손잡이 설계 변수의 변화에 따른 밀기, 들기, 회전 힘 평가)

  • Song, Young-Woong;Kim, Kyoung-Ah;Lee, Ho-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.84-91
    • /
    • 2012
  • This study evaluated three forces (lifting, pushing and twisting) required to maneuver the single-wheel barrows according to handle height, width, horizontal angle and vertical angle. The four independent variables were varied in two levels. Handle height was varies in two levels : 'knuckle height (KH)' and 'KH + 0.1 ${\times}$ stature'. The two handle widths were '1.5 ${\times}$ shoulder width (SW)' and '1.75 ${\times}$ SW'. Two angles of $0^{\circ}$ and $15^{\circ}$ were used for horizontal and vertical angles. The 24 factorial design was used in the experiment. Twelve healthy male students (undergraduate and graduate) participated in the experiment. Subjects exerted three forces (pushing, lifting, and twisting clockwise) in each experimental condition. The order of 16 treatment conditions was determined randomly. Results showed that the effects of the four factors were different according to three forces. While lifting and twisting forces were higher in 'knuckle height', the pushing force was higher in 'KH + 0.1 ${\times}$ stature' (p < 0.05). Lifting and pushing forces showed higher values in the horizontal angle $0^{\circ}$ than in $15^{\circ}$. Handle width and vertical angle showed no statistically significant main effects on three forces (p > 0.05). Results of this study could be used as basic data for the ergonomic design of handle variables of one- or two-wheel barrows.

Kinematical Analysis of Projection Factors to Record Difference dur ing Women's Javelin Throwing (여자 창던지기 시 기록 차이에 따른 투사요인의 운동학적 분석)

  • Park, Jae-Myoung;Yoon, Seok-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.457-467
    • /
    • 2010
  • This study intends to analyze the projection factors' difference on each record of women's javelin throwing. For this purpose, the research analyzed the best record and the lowest one of athletes in top 1~7 ranks respectively, who participated in 2009 Daegu Pre-Championship Meeting. For analyze kinematic factors, we analyzed their game photos mainly shot by 3 cameras installed in side places. The used analysis program was Kwon3D 3.1. Analysis variables were the projection velocity, angle, height, trunk lean angle, and supporting leg's knee angle. The results concluded as follows: Different record showed statistically significant differences(p<.05) in terms of horizontal velocity and resultant velocity. There were no statistically significant differences in the variables of projection angle, its height, trunk lean angle and knee angle of support leg. But for the analyzed results to each individual characteristics, the horizontal velocity, projection height, knee angle of support leg and trunk lean angle of release event appeared to have influence on record.

A LONGITUDINAL STUDY OF KOREAN CHILDREN'S PROFILE CHANGE IN RELATION WITH MANDIBULAR GROWTH PATTERN (한국인 아동의 하악골 성장유형에 따른 안모변화에 관한 누년적 연구)

  • Kim, Ui-Hwan;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.175-195
    • /
    • 1985
  • Vertical and horizontal growth occur in the craniofacial complex which ensues continuous changes in facial morphology, until the end of active growth period. Longitudinal study for individual is essential, in the research on growth and development, however, the difficulties in obtaining long term subjects in Korea, the research has been limited. The author analyzed the cephalometric roentgenogrems of 43 boys and 47 girls taken from the ages 6 to 10. The subjects were divided into 3 groups according to SN-MP angle and 2 groups according to gonial angle. In this longitudinal study, 21 variables were measure 4. The obtained results were as follows: 1. SN-MP angle and genial angle had no significant changes in each group with age. 2. With age, facial convexity of hard tissue decreased in all groups, facial angle of hard tissue increased in low SN-MP angle group, but facial convexity of soft tissue had no significant changes in all groups with age. 3. In comparison of high SN-MP angle group and low SN-MP angle group, the former had greater facial convexity and smaller facial angle than the latter. 4. SN-MP angle and the ratio of posterior dental height to anterior dental height had reverse correlation in all groups. 5. High genial angle group revealed larger SN-MP angle, anterior dental height facial convexity, but smaller mandibular length, and the ratio of posterior dental height to anterior dental height compared with low genial angle group.

  • PDF

Growth and Yield Response of Corn Hybrids with Different Canopy Types to Planting Density (옥수수 초형별 재식밀도에 따른 생육 및 수량반응)

  • 이명훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.353-358
    • /
    • 1994
  • Grain yields of errect-leaved corn hybrids were reported to be increased as planting density(PD) increased compared to those of horizontal leaf type hybrids. This trial was conducted to investigate the difference between errect and horizontal-leaved hybrids in response to different PD. Grain yields of both type hybrids were decreased at the highest PD, however, that of horizontal-leaved hybrid, Ga209 ${\times}$ Ki14A, was decreased more than errect-leaved hybrids which indicated varietal difference in response to PD. Responses to PD for days to tasseling, plant height, ear height, and leaf angle were not significant, also, PD ${\times}$ hybrid interactions were not observed. Yield components were decreased as PD increased and there were no PD ${\times}$ hybrid interactions for these characters. Leaf angle was negatively correlated with grain yield and yield components except for kernel weight.

  • PDF

Kinematic Analyses of Men's Pole Vault in IAAF World Championships, Daegu 2011 (2011 대구 세계육상선수권대회 남자 장대높이뛰기경기 기술의 운동학적 분석)

  • Choi, Kyoo-Jeong;Yi, Kyung-Ok;Kim, Nam-Hee;Kang, Ji-Eun;Kim, Hye-Lim
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.551-560
    • /
    • 2011
  • The purpose of this study was to perform the kinematic analyses of the men's pole vault skills in IAAF World Championships Daegu 2011. Subjects were the 1st through 8th place finishers in the pole vault. The kinematic analyses were divided into four phases: two dimensional run up analysis, and three dimensional analyses for the remaining plant, swing up, and extension phases. Run-up variables consisted of run up distance, number of steps, average step length, the ratio of step length to his height, average velocity at the final 6~11 m, approach position. Three variables were analyzed during plant: pole angle, center of gravity (COG) velocity, and takeoff angle of COG. Swing up phase variables included: pole flexion angle, COG velocity (horizontal, vertical, resultant), COG trajectory and bar approach angle of COG. Compared to the 2009 World Championships in Berlin, the average vault height, run up velocity and approach position increased. However, horizontal velocity during the last two steps of the final approach decreased dramatically compared to speeds from 1990. These results reflect the change in both technique and improved physical fitness in pole vaulters. During extension, the peak height of COG averaged 0.3m higher then COG height when the pole was released. These specific results can help coaches and athletes modify training and improve performance.

Sensitivity Analysis of Excavator Activity Recognition Performance based on Surveillance Camera Locations

  • Yejin SHIN;Seungwon SEO;Choongwan KOO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1282-1282
    • /
    • 2024
  • Given the widespread use of intelligent surveillance cameras at construction sites, recent studies have introduced vision-based deep learning approaches. These studies have focused on enhancing the performance of vision-based excavator activity recognition to automatically monitor productivity metrics such as activity time and work cycle. However, acquiring a large amount of training data, i.e., videos captured from actual construction sites, is necessary for developing a vision-based excavator activity recognition model. Yet, complexities of dynamic working environments and security concerns at construction sites pose limitations on obtaining such videos from various surveillance camera locations. Consequently, this leads to performance degradation in excavator activity recognition models, reducing the accuracy and efficiency of heavy equipment productivity analysis. To address these limitations, this study aimed to conduct sensitivity analysis of excavator activity recognition performance based on surveillance camera location, utilizing synthetic videos generated from a game-engine-based virtual environment (Unreal Engine). Various scenarios for surveillance camera placement were devised, considering horizontal distance (20m, 30m, and 50m), vertical height (3m, 6m, and 10m), and horizontal angle (0° for front view, 90° for side view, and 180° for backside view). Performance analysis employed a 3D ResNet-18 model with transfer learning, yielding approximately 90.6% accuracy. Main findings revealed that horizontal distance significantly impacted model performance. Overall accuracy decreased with increasing distance (76.8% for 20m, 60.6% for 30m, and 35.3% for 50m). Particularly, videos with a 20m horizontal distance (close distance) exhibited accuracy above 80% in most scenarios. Moreover, accuracy trends in scenarios varied with vertical height and horizontal angle. At 0° (front view), accuracy mostly decreased with increasing height, while accuracy increased at 90° (side view) with increasing height. In addition, limited feature extraction for excavator activity recognition was found at 180° (backside view) due to occlusion of the excavator's bucket and arm. Based on these results, future studies should focus on enhancing the performance of vision-based recognition models by determining optimal surveillance camera locations at construction sites, utilizing deep learning algorithms for video super resolution, and establishing large training datasets using synthetic videos generated from game-engine-based virtual environments.

Cephalometric study of the effect of cervical pull headgear based on facial growth patterns (안모의 성장유형에 따른 경부견인 헤드기어의 효과에 대한 두부방사선계측학적 연구)

  • Kang, Eun-Ha;Chang, Chongon
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.503-510
    • /
    • 1999
  • The purpose of this study is to investigate the negative effects of cervical pull headgear and to compare the differences between the two groups of growers-vertical grower and horizontal grower group-which are classified by the posterior-anterior facial height ratio. Initial and final lateral cephalograms were taken for 26 patients including 15 vertical growers and 11 horizontal growers ; also, 3 angular measurements and 4 linear measurements were evaluated. The following results were found. 1. The palatal plane was tipped anteroinferiorly in the vertical grower group. 2. The posterior facial height/anterior facial height ratio was increased in the horizontal grower group. 3. The Mandibular plane angle remained stable on both groups. 4. There was no significant difference between the two groups in the amount of maxillary molar extrusion.

  • PDF