• 제목/요약/키워드: hedgehog signal

검색결과 11건 처리시간 0.019초

Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development

  • Lee, Hankyu;Ko, Hyuk Wan
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.367-372
    • /
    • 2020
  • Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.

감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과 (Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling)

  • 최재영;임종석;심보람;양영헌
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.532-541
    • /
    • 2020
  • 본 연구는 지방감소를 위한 소재개발로 감국 유산균 발효물이 갖는 지방구세포 분화 억제효과를 관찰하였다. 감국 추출물의 세포독성을 극복하는 유산균의 발효물을 제작하였다. 3T3-L1 세포주에서 감국 추출물 및 발효물이 갖는 세포독성은 모두 없었다(1day culture). 감국 추출물 처리 대조군과 비교하여 3T3-L1 세포주에 처리시 증식 유도된 발효물을 선별하였다. 감국 추출물 및 발효물의 분화억제 및 세포생존률 FACS분석은 분화 유도된 세포가 모든 실험군에서 줄어들었다. 3T3-L1 세포주에서 감국 추출물과 발효물 처리가 protein kinase B (Akt) pathway활성이 증가하였고, 단백질 발현은 지방구세포로 분화되면서 Gli2의 수준은 감소하였다. Hedgehog를 조절하는 유산균은 KCTC 3115인 것을 알 수 있었다. 분화와 관련된 KCTC 3115 및 KCTC 3109 발효군에서 단백질 수준에서 C/EBPα 및 FAS를 감소, pACC는 증가시키는 것을 확인하였다. 감국 추출물과 4개의 감국 유산균 발효물 중 Lactococcus lactis subsp. lactis KCTC 3115 발효물이 지방구세포 분화 신호를 더 효과적으로 조절하고, hedgehog을 같이 조절하여 지방전구세포의 분화를 억제하는 것을 알 수 있었다. Hedgehog 신호를 조절하면서 분화를 억제하는 물질에 대한 연구가 더 필요할 것으로 판단된다. 따라서 감국 발효물의 생리활성 물질 중 향후 매커니즘 분석을 위한 활성물질의 자료가 더 필요할 것으로 여겨지며, 감국 추출물 및 감국 발효물의 hedgehog 신호조절이 새로운 비만치료제로 개발될 수 있음을 위한 가능성을 제시하고자 한다.

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • 제44권4호
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Camphor의 Hedgehog 신호 SMO 조절을 통한 지방구세포 분화 억제효과 (Camphor Inhibits Adipocyte Differentiation via Its Impact on SMO-dependent Regulation of Hedgehog Signaling)

  • 최재영;임종석;이자복;양영헌
    • 생명과학회지
    • /
    • 제30권11호
    • /
    • pp.973-982
    • /
    • 2020
  • 본 연구는 지방구세포 감소를 위한 소재개발로 감국 추출물의 대표물질인 camphor가 갖는 지방구세포 분화억제효과를 관찰하였다. camphor의 세포독성을 확인하기 위해 3T3-L1 세포주를 이용하여 세포독성 측정을 1 day에서 10 day까지 확인하였고, 세포독성은 모두 없었다. PTCH siRNA를 처리 시 PTCH가 비활성되어 분화가 억제되었고, SMO siRNA 처리시 SMO가 비활성화되어 분화가 유도되었다. PTCH 억제는 SMO를 활성화시키는 기전으로HH 신호의 활성화가 지방구세포 분화를 억제시키는 것을 보여준다. FACS를 이용한 Gli1 발현은 KCTC 3237은 62.7±1.5%, camphor는 60.4±2.2% 로 분화된 세포 24.9±3.1% 보다 높은 것을 확인하였다. GC-MS에서 발효된 camphor의 구조변화는 없는 것으로 확인되었으나, KCTC 3237에서 15.41% 양적 증가를 확인했다. 또한camphor가 SMO를 과발현시키고, Gli1의 변화를 조절하였다. 따라서 감국 발효물의 생리활성 물질 중 향후 매커니즘 분석을 위한 활성물질인 camphor를 이용해 동물모델에서 비만억제 효과에 대한 자료가 더 필요할 것으로 여겨지며, 감국 추출물 및 발효물의 HH신호조절이 새로운 비만치료제로 개발될 수 있는 가능성을 제시하고자 한다.

Gene Microarray Assessment of Multiple Genes and Signal Pathways Involved in Androgen-dependent Prostate Cancer Becoming Androgen Independent

  • Liu, Jun-Bao;Dai, Chun-Mei;Su, Xiao-Yun;Cao, Lu;Qin, Rui;Kong, Qing-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9791-9795
    • /
    • 2014
  • To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-${\beta}$ signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

Structure and Function of the Developmental Signaling Molecule Hedgehog

  • Leahy, Daniel J.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.103-111
    • /
    • 1999
  • Hh proteins represent a new signaling paradigm in metazoan development. In species ranging from fruit flies to humans, Hh proteins mediate multiple processes vital to appropriate pattern formation in the developing embryo. Hh proteins undergo an autoprocessing event in which the full-length protein is cleaved into N-terminal and C-terminal domains (Hh-N and Hh-C, respectively), and a cholesterol moiety becomes covalently attached to Hh-N. All known signaling activities of Hh proteins are mediated by Hh-N while both the cleavage and cholesterol transfer reactions are mediated by Hh-C. The cholesterol attached to Hh-N is required to retrict the range of Hh signaling and may be involved in ensuring appropriate reception of the Hh signal in target tissues. Disruptions of Hh signaling pathways lead to severe developmental defects in newborns and cancers in adults. While studies of Hh proteins have yielded a wealth of new insight into the molecular mechanisms of metazoan development, many outstanding questions concerning Hh signaling mechanisms ensure that unraveling the secrets of this molecule will keep scientists well entertained for the foreseeable future.

  • PDF

Epithelial-Mesenchymal Interactions for the Development of Intestinal Villi

  • Oh, Seunghoon;Yoo, Young Bok
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.305-311
    • /
    • 2019
  • Small intestine has a structure called villi that increases the mucosal surface area for nutrient absorption. Intricate and tight epithelial-mesenchymal interactions are required for villi development. These interactions are regulated by signaling molecules, physical forces, and epithelial deformation. Signaling molecules include hedgehog (Hh), bone morphogenetic protein (BMP) and Wnt ligands. The Hh ligand is expressed from the epithelium and binds to the underlying mesenchymal cells, resulting in aggregation into mesenchymal clusters. The clusters express BMP and Wnt ligands to control its size and spacing between clusters. The clusters then form villi. Despite the fact that the villi formation is studied extensively, we do not have a complete understanding. In addition, the recent study shows there is a great relationship between the overexpression of the Hh signal and development of cancer in the gastrointestinal tract. Therefore, signaling between epithelial and mesenchymal cells and their physical interactions will be discussed on this review.

Analyzing the factors that contribute to the development of embryological classical type of bladder exstrophy

  • Ria Margiana;Widya Juwita;Khoirul Ima;Zakiyatul Faizah;Supardi Supardi
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.421-427
    • /
    • 2023
  • Bladder exstrophy is a rare congenital condition of the pelvis, bladder, and lower abdomen that opens the bladder against the abdominal wall, produces aberrant growth, short penis, upward curvature during erection, wide penis, and undescended testes. Exstrophy affects 1/30,000 newborns. The bladder opens against the abdominal wall in bladder exstrophy, a rare genitourinary condition. This study is vital to provide appropriate therapy choices as a basis to improve patient outcomes. This study may explain bladder exstrophy and provide treatment. Epispadias, secretory placenta, cloacal exstrophy, and other embryonic abnormalities comprise the exstrophy-spades complex. The mesenchymal layer does not migrate from the ectoderm and endoderm layers in the first trimester, affecting the cloacal membrane. Embryological problems define the exstrophy-aspidistra complex, which resembles epimedium, classic bladder, cloacal exstrophy, and other diseases. Urogenital ventral body wall anomalies expose the bladder mucosa, causing bladder exstrophy. Genetic mutations in the Hedgehog cascade pathway, Wnt signal, FGF, BMP4, Alx4, Gli3, and ISL1 cause ventral body wall closure and urinary bladder failure. External factors such as high maternal age, smoking moms, and high maternal body mass index have also been associated to bladder exstrophy. Valproic acid increases bladder exstrophy risk; chemicals and pollutants during pregnancy may increase bladder exstrophy risk. Bladder exstrophy has no identified cause despite these risk factors. Exstrophy reconstruction seals the bladder, improves bowel function, reconstructs the vaginal region, and restores urination.

척수 운동신경원의 기능과 관련된 생존운동신경원 단백질의 역할 (The Role of Survival Motor Neuron Protein associated with Function of Spinal Motor Neuron)

  • 송주영;권영실;남기원;송주민;김동현;김석범;문동철;최진호;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제13권2호
    • /
    • pp.433-444
    • /
    • 2001
  • This review highlights the ontogenesis and the differentiation of motor neuron in spinal cord, and introduce the survival motor neuron(SMN) which is associated with growth and survival of motor neurons. The differentiation of floor plate cells and motor neurons in the vertebrate neural tube appears to be induced by signals from the notochord. This signal is Sonic hedgehog(Shh). The early development of motor neurons involves the inductive action of Shh. The SMN gene is essential for embryonic viability. SMN mRNA is also expressed in virtually all cell types in spinal cord, including large motor neurons. The SMN protein is involved in RNA processing and during early embryonic development is necessary fer cell survival. Two SMN genes are present in 5q 13 in humans: the telomeric gene(SMNt), which is the SMA-determining gene, and the centromeric analog gene(SMNc). The majority of transcripts from the SMNt gene are full length but, major transcripts of the SMNc gene have a high degrees of alternative splicing and tend to have little or no exon 7. The SMN is involved in the RNA processing(the biogenesis of snRNPs and pre-mRNA splicing), the anti-apoptotic effects, and regulating gene expression.

  • PDF

구강 편평세포암종에서의 암줄기세포 이론과 최신 지견 (Cancer stem cell theory and update in oral squamous cell carcinoma)

  • 김덕훈;윤준용;이주현;김성민;명훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권2호
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.