• Title/Summary/Keyword: heavy-load

Search Result 1,040, Processing Time 0.027 seconds

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Biomechanical Analysis on Dynamic Back Loading Related with Low Back Disorders with Toggle Tasks in Leather Industry Low back (피혁제조 공정 중 토글 작업에서 요통과 관련된 요추 부하의 생체역학적 분석과 개선 방안)

  • Kim, Kyoo Sang;Hong, Chang-Woo;Lee, Dong Kyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Low back disorders (LBDs) have been the most common musculoskeletal problem in Korean workplaces. It affects many workers, and is associated with high costs to many companies as well as the individual, which can negatively influence even the quality of life of workers. The _evaluation of low back disorder risk associated with manual materials handling tasks can be performed using variety of ergonomic assessment tools such as National Institute for Occupational Safety and Health (NIOSH) Revised Lifting Equation (NLE), the Washington Administrative Code 296-62-0517 (WAC), the Snook Tables etc. But most of these tools provide limited information for choosing the most appropriate assessment method for a particular job and in finding out advantage and disadvantage of the methods, and few have been assessed for their predictive ability. The focus of this study was to _evaluate spinal loads in real time with lifting and pulling heavy cow leathers in variety of postures. Data for estimating mean trunk motions were collected as employees did their work at the job site, using the Lumbar Motion Monitor. Eight employees (2 males, 6 females) were selected in this study, in which the load weight and the vertical start and destination heights of the activity remained constant throughout the task. Variance components (three dimensional spaces) of mean trunk kinematic measures were estimated in a hierarchical design. They were used to compute velocity and acceleration of multiple employees performing the same task and to repetitive movements within a task. Therefore, a results of this study could be used as a quantitative, objective measure to design the workplace so that the risk of occupationally related low back disorder should be minimized.

The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System (철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안)

  • Kim, Hyo-San;Park, Joon-Hyung;Kim, Myung-Ryule;Park, Kwang-Hwa;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF

A Effects of Natural Gas-Diesel/Hi-sene Dual Fuel Operation on Performance of a Heavy-Duty Diesel engine for Power Generation (발전용 대형 디젤 엔진의 천연가스-디젤/부생유(Hi-sene) 혼합연소 시 엔진 성능변화에 미치는 영향)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-130
    • /
    • 2016
  • This study is a numerical study using commercial simulation program GT-Power on 1.5MW diesel engine for power generation. Performance comparison has done for diesel operation with dual fuel operation for different engine load(50%, 75%, 100%) using the target engine model with additional gas injection system. Effect of using Hi-sene, which is actually being used in island area, instead of diesel was also studied. As a result, under 60% natural gas with diesel condition, BSFC was increased by 32% without modifying system. There was almost no change for natural gas/Hi-sene condition compared with natural gas/diesel condition. Decrease of burned fuel fraction was the main reason of these phenomena. After optimizing system, BSFC was improved by 2%.

A novel energy-efficient bridgeless boost AC to DC converter (효율을 고려한 새로운 AC/DC 컨버터)

  • Yoon, Kyoung-Kuk;Kim, Seong-Hwan;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2016
  • Power supplies make the load compatible with its power source. DC power supplies are extensively used with most electrical and electronic appliances such as computers, television, and audio sets. The presence of non-linear loads results in a low power factor and higher harmonics in the power system. Several techniques for power-factor correction and harmonic reduction have been reported in the literature. This paper proposes a bridgeless boost converter that improves the power factor and reduces the harmonic content in input line currents as compared to full-bridge rectifiers. This bridgeless boost converter eliminates the need of a line-voltage bridge rectifier in conventional boost converter and thereby reduces conduction losses. The effectiveness of the proposed scheme is verified by computer simulations by using the PSIM software.

Limit Loads for Circular Wall-Thinned Feeder Pipes Considering Bend Angle (굽힘각도를 고려한 원형 감육이 발생한 중수로 피더관의 한계하중)

  • Bae, Kyung-Dong;Je, Jin-Ho;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • In CANDU, feeder pipes supply heavy water to pressure tube and steam generator. Under service conditions, Flow-Accelerated Corrosion (FAC) produces local wall-thinning in the feeder pipes. The wall-thinning in these pipes affects the integrity of the piping system, as verified in previous research. This paper provides limit loads for wallthinned feeder pipes with $45^{\circ}$ and $60^{\circ}$ bend angles, and proposes an equation that predicts the limit loads for wallthinned feeder pipes with arbitrary bend angles. On the basis of finite element limit analyses, limit loads are obtained for wall-thinned feeder pipes under in-plane bending and internal pressure. There are two cases of in-plane bending: the in-plane closing direction and the in-plane opening direction. The material is considered the effect of the large deformation, so an elastic-perfectly-plastic material is assumed in the calculations.

Seismic Resistance of Cast-In-Place Concrete-Filled Hollow PC Columns (현장타설 콘크리트 채움 중공 PC기둥의 내진성능)

  • Lim, Woo-Young;Park, Hong-Gun;Oh, Jung-Keun;Kim, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2014
  • Two types of cast-in-place concrete-filled hollow PC (HPC1, HPC2) columns were developed to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. To form the hollow PC columns, a couple of prefabricated PC panels was used for HPC1, and special hoops were used for HPC2. Lateral pressure of wet concrete on PC faces was measured while placing the concrete inside the columns. To evaluate the seismic resistance, full scale specimens of two HPC columns and a conventional RC column were tested under combined axial compression and lateral cyclic loading. The test results showed that the structural performance of the proposed HPC columns such as intial stiffness, maximum strength, and displacement ductility was comparable to that of the conventional RC column, but the energy dissipation of HPC2 slightly decreased after rebar-buckling. However, all the test specimens satisfied the energy dissipation requirement specified in ACI 374.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

Standardization and Development of Pharmacopoeial Standard Operating Procedures (SOPs) of Classical Unani Formulation

  • Mannan, Mohd Nazir;Kazmi, Munawwar Husain;Zakir, Mohammad;Naikodi, Mohammed Abdul Rasheed;Zahid, Uzma;Siddiqui, Javed Inam
    • CELLMED
    • /
    • v.10 no.2
    • /
    • pp.16.1-16.8
    • /
    • 2020
  • Standardization of drug deals with confirmation of drug identity and determination of drug quality and purity. Unani herbal formulations are used in traditional medicine for the treatment of various diseases. Cancer is a disease which causes abnormal, uncontrolled growth of body tissue or cells, which tend to proliferate in an uncontrolled way. Spread of cancer from site of origin to other organs of the body is called metastasis. It is a hyper proliferative disorder involving, transformation, dysregulation of apoptosis, invasion and angiogenesis. The present study aimed to standardize a classical Unani formulation (CUF) described as anticancer properties. The CUF has been used for anti-cancerous activity (Dāfi'-i-saraṭān) in human population by Unani physicians for centuries. The standardization parameters carried out for classical Unani formulation are pharmacognostical studies, physicochemical parameters, high-performance thin layer chromatography (HPTLC), microbial load, aflatoxins, and heavy metals revealing specific identities and to evaluate Pharmacopoeial standards. Experiment and the data obtained established the Pharmacopoeial standards for this formulation for identification and quality control purpose. The CUF has been successfully standardized and standard operating procedures (SOPs) for its preparation has been laid down which may serve as a standard reference in future. The standardization data of this formulation may be used as a standard guideline for preparation of the formulation in future.

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

  • Ho, Wen-Fu;Tsou, Hsi-Kai;Wu, Shih-Ching;Hsu, Shih-Kuang;Chuang, Shao-Hsuan;Hsu, Hsueh-Chuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.51-62
    • /
    • 2014
  • The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60^{\circ}C$ for 24 h, resulting in the formation of a porous network structure composed of sodium hydrogen titanate. Afterwards, the specimens were aged in ethyl alcohol at $60^{\circ}C$ for 5 or 10 min, and subsequently immersed in simulated body fluid at $37^{\circ}C$ for 3, 7 and 14 days. Ethyl alcohol aging significantly increased the apatite-forming abilities of Ti-7.5Mo. The amount of apatite deposited on the Ti-7.5Mo after NaOH treatment and subsequent ethyl alcohol aging was much greater, especially after the Ti-7.5Mo specimens were aged for 5 min. Due to its excellent combination of bioactivity, low elastic modulus and low processing costs, the Ti-7.5Mo treated with NaOH aqueous solutions and subsequently aged in ethyl alcohol has promising heavy load-bearing applications.