• Title/Summary/Keyword: heavy snowfall

Search Result 138, Processing Time 0.031 seconds

Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation (기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과)

  • Seol, Kyung-Hee;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

The Distribution of Snowfall by Siberian High in the Honam Region - Emphasized on the Westward Region of the Noryung mountain ranges - (시베리아 고기압 확장시 호남 지방의 강설 분포 - 노령 산맥 서사면 지역을 중심으로 -)

  • 이승호;천재호
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.173-183
    • /
    • 2003
  • This study aims to understand the patterns of spatial distribution of snowfall by Siberian High in the Honam region in Korea. In the Honam region, Siberian High induces snowfall dominantly. There is a huge amount of snowfall in the westward of the Noryung mountain ranges to the Wert coast in the Honam region affected by northwesterly wind directly from the Siberian High. The westward of the Noryung mountain ranges such as a heavy snowfall region has a various pattern of distribution of snowfall due to topography. The coast region has a large amount of snowfall by sea effect. And, snowfall amount is decreased from the coast to the inland plain. However, in front of mountain, snowfall is increase by reason of a forced ascending air to the mountain. In general the region where frequently appear a cumuliform cloud has a large amount of snowfall. A cumuliform cloud is frequent in the mountainous region in inland, the coast, and the inland plain in order Snowfall is intense in the coast and the mountainous region, and weak in the inland plain. In the mountainous region, a cumuliform cloud induced tv a forced ascending air by reason of topography generates snowfall mostly. This fact is the main difference with snowfall in the mountainous region and the coast region. In the result, in the Honam region, snowfall distribution and snowfall pattern are various, according to geographical climate factor such as sea and topography. The heavy snowfall region in the Honam region is divided into the coast region affected by sea effect and the mountainous region affected by topography effect.

A Study on the Change of Heavy Snow Strength by SST in Influence of Continental Polar Air Mass

  • Park, Geon-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • The results of the synoptic meteorological analysis showed that when the cold and dry continental high pressure was extended, heavy snow occurred at dawn when the upper atmosphere cooled. In particular, when the continental high pressure was extended and the upper pressure trough passed through, heavy snow occurred due to the convergence region formed in the west coast area, sometimes in the inland of the Honam area. In addition, it was verified that the changes in the humidity coefficients in the upper and lower layers are important data for the determination of the probability, start/end and intensity of heavy snow. However, when the area was influenced by the middle-latitude low pressure, the heavy snow was influenced by the wind in the lower layer (925 hPa and 850 hPa), the equivalent potential temperature, the convergence field, the moisture convergence and the topography. In Case 2010 (30 December 2010), OSTIA had the best numerical simulation with diverse atmospheric conditions, and the maximum difference in the numerically simulated snowfall between NCEP/NCAR SST and OSTIA was 20 cm. Although there was a regional difference in the snowfall according to the difference in the SST, OSTIA and RTG SST numerical tests, it was not as significant as in the previous results. A higher SST led to the numerical simulation of larger snowfall, and the difference was greatest near Buan in the west coast area.

A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events (영동 대설사례의 레이더 강설강도 추정 관계식에 관한 연구)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.509-522
    • /
    • 2016
  • Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.

Estimating Equipment and vehicle Demands for Snow Removal Tasks by Road Snow Removal Scenarios (도로 제설 시나리오별 소요 제설장비 및 차량 추정에 관한 연구)

  • Kim, Heejae;Kim, Sunyoung;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.199-212
    • /
    • 2017
  • Rapid roadway snow removal is significantly important due to difficult occurrence estimation of heavy snowfall disasters by global warming and climate change. Local governments of S. Korea have snow removal equipments and vehicles based on past experiences without considering snowfall and roadway characteristics. The objective of this research is to develop the demand estimation procedure for snow removal equipments and vehicles based on regional snowfall and roadway characteristics. This research first classifies regional snowfall characteristics using KMO's ten-year snowfall data. Second, roadway snow removal length is computed for local governments. Real possession data is compared with demand estimation of snow removal equipments & vehicles for each local government with roadway snow removal scenarios. Finally, required demands of snow removal equipments & vehicles are predicted by concerning regional snowfall amount and required snow removal hours. Results from this research are used for developing heavy snowfall disaster management policies for optimal demands and snow removal routes of 229 local governments.

A Study of Quantitative Snow Water Equivalent (SWE) Estimation by Comparing the Snow Measurement Data (적설 관측자료 비교를 통한 정량적 SWE 산출에 관한 연구)

  • Ro, Yonghun;Chang, Ki-Ho;Cha, Joo-Wan;Chung, Gunhui;Choi, Jiwon;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • While it is important to obtain the accurate information on snowfall data due to the increase in damage caused by the heavy snowfall in the winter season, it is not easy to observe the snowfall quantitatively. Recently, snow measurements using a weighing precipitation gauge have been carried out, but there is a problem that high snowfall intensity results in low accuracy. Also, the observed snowfall data are sensitive depending on wind speed, temperature, and humidity. In this study, a new process of quality control for snow water equivalent (SWE) data of the weighing precipitation gauge were proposed to cover the low accuracy of snow data and maximize the data utilization. Snowfall data (SWE) observed by Pluvio, Parsivel, snow-depth meter using laser or ultrasonic, and rainfall gauge in Cloud Physics Observation Site (CPOS) were compared and analyzed. Applying the QC algorithm including the use of number of hydrometeor particles as reference, the increased SWE per the unit time was determined and the data noise was removed and marked by flag. The SWE data converted by the number concentration of hydrometeor particles are tested as a method to restore the QC-removed data, and show good agreement with those of the weighing precipitation gauge, though requiring more case studies. The three events data for heavy snowfall disaster in Pyeongchang area was analyzed. The SWE data with improved quality was showed a good correlation with the eye-measured data ($R^2$ > 0.73).

Characteristics of Sea Surface Temperature Variation during the High Impact Weather over the Korean Peninsula (한반도에서 위험기상 발생 시 나타나는 해수면온도 변동의 특성)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.240-258
    • /
    • 2019
  • Typhoons, torrential rainfall, and heavy snowfall cause catastrophic losses each year in the Republic of Korea. Therefore, if we can know the possibility of this phenomenon in advance through regular observations, it will be greatly beneficial to Korean society. Korea is surrounded by sea on its three sides, and the sea surface temperature (SST) directly or indirectly affects the development of typhoons, heavy rainfall, and heavy snowfall. Therefore, the characteristics of SST variability related to the high impact weather are investigated in this paper. The heavy rainfall in Korea was distributed around Seoul, Gyeonggi, and west and southern coast. The heavy snowfall occurred mainly in the eastern coastal (hereafter Youngdong Heavy Snow) and the southwestern region (hereafter Honam-type heavy snow). The SST variability was slightly different depending on the type and major occurrence regions of the high impact weather. When the torrential rain occurred, the SST variability was significantly increased in the regions extending to Jindo-Jeju island-Ieodo-Shanghai in China. When the heavy snow occurred, the SST variability has reduced in the southern sea of Jeju island, regardless of the type of heavy snowfall, whereas the SST variability has increased in the East Sea near $130^{\circ}E$ and $39^{\circ}N$. Areas with high SST variability are anticipated to be used as a basis for studying the atmospheric-oceanic interaction mechanism as well as for determining the background atmospheric aerosol observation area.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

An Analysis of Potential Danger Factors by the Characteristics of Heavy Snow - Focused 11 Cities and Guns in Chungcheongbuk-do - (대설특성을 통한 잠재적 위험도 분석 - 충청북도 11개 시·군을 중심으로 -)

  • Yoon, Sanghoon;Park, Keunoh;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • This Study analyzed heavy snow properties according to the area that was based by winter weather properties and the damage data by the heavy snow among each local government of Chungcheongbuk-do. The result of analysis, Jecheon-si and Boeun-gun are represented the highest dangerous regions by potential degree of risk by average amount of snowfall for 35 years. But, the potential degree of risk by maximum amount of snowfall for 35 years is different with it. Cheongju-si and Youngdong-gun, Goesan-gun, Boeun-gun are represented the highest dangerous regions. Examining the frequency of regions with potential danger factors according to the characteristics of heavy snowfall, Boeun-gun and Jecheon-si, Goesan-gun, Youngdong-gun, Cheongju-si is derived the highest dangerous regions in Chungcheongbuk-do.

A Study on Highway Capacity Variation According to Snowfall Intensity (강설에 따른 고속도로 용량 변화에 관한 연구)

  • Son, Young Tae;Lee, Sang Hwa;Im, Ji Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • Under the consumption of bad weather situation affects traffic flows, the study scope is focused on highway capacity and speed variations among other highway traffic flow characteristic changes according to snowfall density. Thus, this study carried out through the data collection and statistical analysis by focusing on capacity and speed changes. Traffic volume, speed and density were selected as factors to explain the property change of a traffic flow for analysis, and 7 basic sections such as 3 highways in Gyeonggi-do and 4 highways near the meteorological observatory were selected as survey points for data collection. Snowfall levels were classified into 3 steps(Light, Medium, Heavy Snow) to analyze the capacity change by snowfall levels. As a result of analysis, the change of capacity depending on snowfall levels decreased 13.2% in case of light snow compared to a good weather, 18.6% in case of medium snow and 32.0% in case of heavy snow, so the capacity reduction rate increased as the snowfall level increased. The worsening weather appeared to have a very big possibility to act as a factor to reduce the operational efficiency of a road, so a road design and operation method considering this should be presented in the future.