• Title/Summary/Keyword: heavy metal removal

Search Result 485, Processing Time 0.031 seconds

Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2004
  • Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.

Effect of Sulfate and Heavy Metals on Methanogenic Activation of in the Anaerobic Digestion of Tannery Wastes (피혁폐수의 혐기성 소화시 황산염과 중금속이 메탄균 활성에 미치는 영향)

  • Shin, Hang Sik;Oh, Sae Eun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • For treating tannery wastewater containing high sulfate and heavy metals, test was performed to assess their performance, competition between SRB (sulfate reducing bacteria) and MPB (methane producing bacteria), and the activity of MPB according to change of chromium concentrations. COD removal efficiency was above 70% at VLR (volumetric loading rate) of 2.0 gCOD/I.day and HRT (hydraulic retention time) of 18hrs at $35^{\circ}C$. In the competition between SRB and MPB, about 15% of the removed COD was utilized by SRB in the begining, but it became 43% at the end. It indicated that MPB was strongly suppressed by the occurrence of significant sulfate reduction since a large electron flow was uptaken by SRB. For the entire experiment, removal efficiencies of chromium concentration were more than 90%. Despite high removal efficiencies of chromium concentration, performance of reactor did not change significantly during the experimental periods. Expecially, chromium (III) is tannery wastewater is less toxic than chromium (VI).

  • PDF

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Competive Adsorption Characteristics of CFW on Cu and Zn (음식물 탄화재의 Cu와 Zn에 대한 경쟁 흡착특성)

  • Han, Jung-Geun;Kim, Dong-Chan;Hong, Ki-Kwon;Yoon, Won-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper describes the batch test results for application of CFW(Carbonized Foods Waste), which was produced by the process of recycling waste, in PRB system. It analyzed characteristics for individual adsorption and competitive adsorption of Cu and Zn in heavy metals. In individual adsorption, the Langmuir and Freundlich models are used to predict adsorption equilibrium. The adsorption equilibrium corresponded to the Langmuir's and the maximum adsorption amount of Cu was greater than Zn's. The removal of heavy metal is predicted that Zn was faster than Cu. The reaction rate of Zn based on Pseudo-first-order and Pseudo-second-order was faster than Cu's, and the result of competitive adsorption test confirmed that the adsorption amount of Zn is reduced under similar condition for competitive adsorption rate of Cu and Zn. When Zn solution is mixed in Cu, Cu is adsorbed 86% on CFW. However, the adsorption of Zn is 19% on the contrary condition. Therefore, the removal characteristics of separate heavy metal should be considered for efficient treatment of contaminated ground based on complex heavy metal.

The Treatment of Cyanide by Electro-Oxidation (전기산화를 이용한 Cyanide의 처리)

  • Kim, Hong-Tae;Lee, Young-Do;Kim, Kyu-Choul;Kim, Hak-Seok;Chun, Bong-Jun;Ku, Bong-Hun
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.335-342
    • /
    • 2008
  • This study based on electro-coagulation & oxidation reaction is applied to wastewater treatment. Electro-oxidation reaction is used to remove cyanide(CN) which is contained in plating wastewater. Cyanide is transferred by gases such as $NH_3,\;NO_x,\;CO_2$. Analysis result and removal efficiency of Cyanide which is contained in heavy metal wastewater of plating plant, are shown as following paragraph. In electrode arrangement experiment, removal efficiency of carbon electrode(-)/STS316L electrode(+) arrangement method is superior to carbon electrode(-)/carbon electrode(+) arrangement method. Removal efficiencies of cyanide in different HRT such as 30 min, 45 min, 60 min, 75 min and 90 min are 85.5%, 93.1%, 98.0%, 98.7% and 99.4% respectively in carbon electrode(-)/STS316L electrode(+) arrangement method. Finally we can estimate the critical point at HRT of 60 min which the variation of removal efficiency is decreased and HRT to obtain removal efficiency of less than 1 mg/LCN is minimum 90 min.

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

Application of Iron Sand as Adsorbent for the Removal of Heavy Metal (중금속 제거용 흡착제로서의 철광사 적용)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1180-1185
    • /
    • 2005
  • Iron sand, having iron as a major component, was applied in the treatment of synthetic wastewater containing Cu(II) or Pb(II). To investigate the stability of iron sand at acidic condition, dissolution of Fe and Al was studied with variation of solution pH ranging from 2 to 4.5. Iron concentration in the extracted solution was below the emission regulation of wastewater even at a strong acidic condition, pH 2. Although an important concentration of aluminum was extracted at pH 2, the dissolution greatly decreased above pH 3. This stability test suggests that application of iron sand has little problem in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) and Pb(II) onto iron sand was investigated in a batch and a column test. In case of Cu(II), rapid adsorption was noted, showing 50% removal within 2 hrs, and then reached a near complete equilibrium after 24 hrs. Adsorption was favorable at higher pH in each metal ion and showed a near complete removal above pH 6, indicating a typical cationic-type adsorption. From the adsorption isotherm obtained with variation of the concentration of each metal ion, the maximum adsorption capacity of Cu(II) and Pb(II) was identified as 2,170 mg/kg 및 3,450 mg/kg, respectively.

Adsorption of Heavy Metal Ions from Aqueous Solution by Chestnut Shell (밤 부산물의 수용액 중 중금속 흡착 특성)

  • Lee, Hyeon-Yong;Hong, Ki-Chan;Lim, Jung-Eun;Joo, Jin-Ho;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.69-74
    • /
    • 2009
  • In Korea, large amounts of chestnut shell as by-products are produced from food industries. However, most of the by-products exist with no disposal options. Biosorption uses biomass that are either abundant or wastes from industrial operations to remove toxic metals from water. Objective of this research was to evaluate the feasibility of using chestnut shell as by-products for removal of metal ions(Pb, Cu and Cd) from aqueous solution. The chestnut shell was tested for its efficiency for metal removal by adopting batch-type adsorption experiments. The adsorption selectivity of chestnut shell for metals was Pb > Cu > Cd at solution pH 5.5. The Langmuir isotherm adequately described the adsorption of chestnut shell for each metal. Using The maximum adsorption capacity predicted using Langmuir equation was 31.25 mg $g^{-1}$ 7.87 mg $g^{-1}$ and 6.85 mg $g^{-1}$ for Pb, Cu and Cd, respectively. Surface morphology, functional group and existence of metals on chestnut shell surface was confirmed by FT-IR, SEM and EDX analysis. The chestnut shell showed an outstanding removal capability for Pb compared to various adsorbents reported in the literatures. The overall results suggested that chestnut shell might can be used for biosorption of Pb from industrial wastewater.