• Title/Summary/Keyword: heavy metal removal

Search Result 483, Processing Time 0.024 seconds

Raoultella ornithinolytica as a Potential Candidate for Bioremediation of Heavy Metal from Contaminated Environments

  • Laila Ibrahim Faqe Salih;Rezan Omer Rasheed;Sirwan Muhsin Muhammed
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.895-908
    • /
    • 2023
  • Disposal of waste containing heavy metals into the environment is a major threat to human health and can result in toxic or chronic poisoning in aquatic life. In the current study, metal-resistant Raoultella ornithinolytica was isolated from metal-contaminated samples collected from the Tanjaro River, located southwest of Sulaymaniyah, Iraq. R. ornithinolytica was identified by partial amplification of 16S rRNA. The uptake potency of heavy metals was assessed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and indicated that R. ornithinolytica removed 67, 89, 63.4, 55.6, 56.5, 65, and 61.9% of Cd, Pb, Cr, Ni, Zn, Co, and Fe, respectively. These removal rates were influenced by temperature, pH, and contact time; at 35℃ and pH 5 with a change in the incubation time, the reduction rate improved from 89 to 95% for Pb, from 36.4 to 45% for Cu, and from 55.6 to 64% for Ni. Gene analysis indicated that R. ornithinolytica contained pbrT, chrB, nccA, iroN, and czcA genes, but the pcoD gene was absent. Energy-dispersive X-ray spectroscopy (EDS) images showed evidence of metal ion binding on the cell wall surface with different rates of binding. Transmission electron microscopy (TEM) detected different mechanisms for metal particle localization; cell surface adsorption was the main mechanism for Pb, Zn, and Co uptake, while Cd, Ni, and Fe were accumulated inside the cell. The current study describes, for the first time, the isolation of R. ornithinolytica from metal-contaminated water, which can be used as an eco-friendly biological expedient for the remediation and detoxification of metals from contaminated environments.

Effect of Operating Parameters on the Removal Performance of Copper Ion by Electrodialysis (전기투석을 이용한 구리이온의 제거 시 운전인자의 영향)

  • Jung, Hyo-Sang;Lee, Gangchoon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for copper removal from industrial wastewater, the effect of operating parameters on the removal of copper was experimentally estimated. The limiting current density (LCD) linearly increased with the copper concentration and the flow rate. The time when the copper concentration of diluate reaches to 3 mg/L was linearly proportional to initial concentration of diluate, and the concentration of concentrate did not affect the removal rate. Increase in the flow rate gave a positive effect on the removal rate and became insignificant at flow rates greater than 2.4 L/min. The removal rate increased with the applied voltage. From the operation of the electrodialysis module used in this research, the flow rate of 2.4 L/min and the voltage corresponding to the 80~90% of LCD were found be the optimum operating condition for the copper removal from highly concentrated copper solutions.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

A Study on the Fixation of Heavy Metals with Stabilized Soils in the Landfill Liner (폐기물매립지 차수재로서 고화토의 중금속 고정능력 평가에 관한 연구)

  • 노희정;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.145-149
    • /
    • 2000
  • We performed the geotechnical experiments of the hydraulic conductivity and compressive strength test with the stabilized soil in the laboratory, proved that it is useful to use the stabilized soil as an alternative for natural clay soil. Also, for mixing adding materials in the stabilized soil, it was determined that 1) the optimal mixing ratio of cement : bentonite : stabilizing agent was 90:60:1 of mass ratio(kg) for 1㎥ with soil, 2) it was also possible to use low quality bentonite(B\circled2) classified by swelling grade because of little difference from results of the hydraulic conductivity and compressive strength test with high quality bentonite(B\circled1). According to the results of the fixation ability of heavy metals(Pb$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Zn$^{2+}$) with soil and additives, authors can conclude that the higher pH condition had the more removal efficiency of heavy metals. B\circled1 and cement had especially high removal efficiency of heavy metals in a whole pH because of high alkalinity.alinity.

  • PDF

Mineralogical Characteristics and Removal of Heavy Metals from Gum-poong Mine Tailings (금풍광산(鑛山) 광물(鑛物)찌꺼기의 광물(鑛物)학적 특성(特性) 및 중금속(重金屬) 제거(除去))

  • Cha, Jongmun;Park, Jayhyun;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • The objective of this study was to research the mineralogical characteristics and removal of heavy metals of tailings from Gum-poong mine. From the result of mineralogical analysis, there are several sulphide minerals such as chalcocite, aresenopyrite, pyrite, sphalerite and galena. Cd and Zn have a good positive correlation from the statistical relation between Cd and other heavy metals(Cu, Pb, Zn). Residual heavy metals(As, Cd, Cu, Pb, Zn) from the Gum-poong tailings were removed under the warning criteria from the result of froth flotation with K.A.X.(Potassium Amyl Xanthate) and Aerofloat 211.

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals (키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용)

  • Sung, Ik-Kyoung;Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.475-479
    • /
    • 2011
  • Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and $NH_2$ groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-${\gamma}$-glutamic acid(${\gamma}$-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in ${\gamma}$-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of ${\gamma}$-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing ${\gamma}$-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/${\gamma}$-PGA nanoparticles were used to examine their removal of several heavy metal ions($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and $Ni^{2+}$) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Water Purification Properties of Porous Zeolite Concrete (다공성 제올라이트 콘크리트의 수질정화 특성)

  • Choi, Min Ji;Sung, Nack Kook;Park, Sung Jae;Lee, Jung Ah;Yun, Hong Su;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.332-335
    • /
    • 2011
  • As our interests in eco-friendly materials have been significantly increased, the utilization of porous zeolite concrete that has structural functionality and permeability has been increased. In this paper, the mixture of porous concrete and zeolite, which can be used as multirole boulders, was investigated for the suitability of an environment-friendly product by evaluating of the water purification ability. The contamination removal rates of BOD, TOC, T-N, and T-P in stagnant water tank were 70.6, 67.0, 57.7, and 50.6%, respectively. Also for the non-point source pollution with the inflow and the outflow, the removal rates of Zn, Pb, BOD, and COD were 99.9, 90.0, 69.2, and 33.5%, respectively. The performance of the heavy metal contamination removal for the porous zeolite showed better than that of stagnant system. Therefore, it is expected that the installation of the porous zeolite concrete can play a role as an eco-friendly products by its high contamination removal.