• Title/Summary/Keyword: heavy localized rainfall

Search Result 69, Processing Time 0.023 seconds

A method for Assessment of landslide potentialities using GIS (GIS를 이용한 산사태 발생잠재가능성 평가 기법)

  • Yang In-Tae;Chun Ki-Sun;Lee Sang-Yun;Lee In-Yeop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.313-318
    • /
    • 2006
  • The main cause of natural disaster in Korea is meteorological phenomenon, such as typhoon, heavy rain, storm, rainstorm, heavy snow, hailstorm, overflowing of sea and so on(including thunderstroke, blast, snow damage, freezing and earthquake), and among those disasters, heavy rain takes place most often, and it occupies 80% of total disaster Especially, disaster related to slope collapse (landslide, collapse of retaining wall, burying ect.) takes place every year due to meteorological cause such as localized heavy rain, which is getting stronger. (National Institute for Prevention Disaster, 2002, Meteorological Administration) Accordingly, it is necessary to analyze the features of slope collapse related to natural disaster in Korea, and also to make up counterplan to prevent disaster. This paper will try to analyze potential areas which are susceptible to landslide regarding factors inducing landslide and heavy rain, and to evaluate the potentiality of landslide regarding local particularity of rainfall, furthermore to provide essential information for development of community such as preventing damages from landslide, construction Industry, and effective use of land.

  • PDF

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

A Study on Filter Performance of Materials in Embankment Slope during Heavy Rain (강우시 성토사면 재료의 필터조건검토에 대한 연구)

  • Kim, Sang-Hwan;Mha, Ho-Seong
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents the characteristics of internal erosion of embankment slopes due to the localized heavy rain. In this study, the existing analysis methods of filter performance in embankment materials were reviewed. Based on the theoretical concept of filter conditions to prevent particles from being carried in from the adjacent embankment materials, new analysis method was suggested. According to the new analysis method for filter performance, experimental programs were carried out to investigate the filter performance for controlling and sealing any leak which develops through the embankment materials as a result of internal erosion. Three sets of small scale laboratory tests were carried out with changing the main influence factors such as rainfall intensity, gradient of slope, embankment material condition. It was found that the new analysis method for filter performance to prevent particles from being carried in from the adjacent embankment materials was more capable approach to design the filter materials in embankment slopes. The new criterion or method for satisfactory filter performance, therefore, was recommended.

  • PDF

Development and application of urban flood alert criteria considering damage records and runoff characteristics (피해이력 및 유역특성을 고려한 도시침수 위험기준 설정 및 적용)

  • Cho, Jeawoong;Bae, Changyeon;Kang, Hoseon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, localized heavy rainfall has led to increasing flood damage in urban areas such as Gangnam, Seoul ('12), Busan ('13), Ulsan ('16) Incheon and Busan ('17) etc. Urban flooding occurs relatively rapidly compared to flood damage in river basin, and property damage including damage to houses, cars and shopping centers is more serious than facility damage to structures such as levees and small bridges. In Korea, heavy rain warnings are currently announced using the criteria set by KMA (Korea Meteorological Administration). However, these criteria do not reflect regional characteristics and are not suitable to urban flood. So in this study, estimated the flooding limit rainfall amount based on the damage records for Seoul and Ulsan. And for regions that can not estimate the flooding limit rainfall since there is no damage records, we estimated the flooding limit rainfall using a Neuro-Fuzzy model with runoff characteristics. Based on the estimated flooding limit rainfall, the urban flood warning criteria was set. and applied to the actual flood event. As a result of comparing the estimated flooding limit rainfall with the actual flooding limit rainfall, the error of 1.8~20.4% occurred. And evacuation time was analyzed from a minimum of 28 minutes to a maximum of 70 minutes. Therefore, it can be used as a warning criteria in the urban flood.

Evaluation of characteristics of drainage layer according to particle size, particle size, and compositional location of aggregate using fluid analysis program (유체해석 프로그램을 이용한 골재의 입자크기 및 입도, 구성위치에 따른 배수층의 특성 평가)

  • Lim, Chang-Min;Kwon, Hyun-Woo;Kim, Young-Min;Cho, Do-Young;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.147-148
    • /
    • 2022
  • Due to recent climate abnormalities, the form of rainfall is changing to localized torrential rains. Localized torrential rains cause flooding in urban areas. In addition, in various industrial fields, there are cases where materials necessary for the process are kept outdoors, and damage from material loss and flooding of stockyards occurs during heavy rain. Accordingly, it is necessary to introduce a drainage layer where flooding is expected. This drainage layer places the aggregate inside and allows rainwater to penetrate and drain into the voids between the aggregates. However, the amount of voids differs according to the particle size distribution and particle size of the aggregate, and the drainage performance varies according to the compositional location of the aggregate. Therefore, in this study, the drainage characteristics according to the particle size, particle size, and compositional location of aggregates are analyzed using a fluid analysis program.

  • PDF

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Applicability of Spatial Interpolation Methods for the Estimation of Rainfall Field (강우장 추정을 위한 공간보간기법의 적용성 평가)

  • Jang, Hongsuk;Kang, Narae;Noh, Huiseong;Lee, Dong Ryul;Choi, Changhyun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.370-379
    • /
    • 2015
  • In recent, the natural disaster like localized heavy rainfall due to the climate change is increasing. Therefore, it is important issue that the precise observation of rainfall and accurate spatial distribution of the rainfall for fast recovery of damaged region. Thus, researches on the use of the radar rainfall data have been performed. But there is a limitation in the estimation of spatial distribution of rainfall using rain gauge. Accordingly, this study uses the Kriging method which is a spatial interpolation method, to measure the rainfall field in Namgang river dam basin. The purpose of this study is to apply KED(Kriging with External Drift) with OK(Ordinary Kriging) and CK(Co-Kriging), generally used in Korea, to estimate rainfall field and compare each method for evaluate the applicability of each method. As a result of the quantitative assessment, the OK method using the raingauge only has 0.978 of correlation coefficient, 0.915 of slope best-fit line, and 0.957 of $R^2$ and shows an excellent result that MAE, RMSE, MSSE, and MRE are the closest to zero. Then KED and CK are in order of their good results. But the quantitative assessment alone has limitations in the evaluation of the methods for the precise estimation of the spatial distribution of rainfall. Thus, it is considered that there is a need to application of more sophisticated methods which can quantify the spatial distribution and this can be used to compare the similarity of rainfall field.

Applicable Road Design Method of Debris-Flow Control Structure (토석류 차단시설의 도로적용 설계 방안)

  • Lee, Yong-Soo;Kim, Jin-Hwan;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.243-246
    • /
    • 2009
  • Localized rainfall due to abnormal climate has caused extensive damages killing several tens to hundreds of people for yearly basis. The typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. The recent typhoon, 'Aewinia' of yeat 2006 caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. There are needs to minimize the damages for important structures for repeated heavy rainfalls every year and, especially, because debris flow might be a main cause of road damage, the design criteria and guideline for roads are required to be improved. Therefore, this paper presented design method of debris-flow control structure for road protection.

  • PDF

Disaster Vulnerability Analysis for Steep Slope Failure (급경사지 재해도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, Sang-Hyun;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.930-939
    • /
    • 2009
  • Most of steep slope failures occurring in Korea have appeared during the localized heavy rain period, whereas the evaluation model of a disaster vulnerability analysis that has been proposed to date, has been prepared in consideration only of external factors comprising geographical features. This study calculated a wetness index and a contributory area which delivers moisture to the upper slant surface during the rainfall period, and also conducted a disaster vulnerability analysis in consideration of the convergence of surface water as well as the water system created during the occurrence of rainfall by including a curvature that shows a close relevance with the shape of the minute water system that is created temporarily during the occurrence of rainfall and with the convergence and divergence of surface water. When compared with a steep slope failure occurring within a selected model district in order to verify the prepared disaster analysis, a landslide occurring in the model district had emerged in a region in which the disaster vulnerability analysis was high and the density of the minor water system was also high. If these research results are extended nationwide, it is the most effective to use a disaster vulnerability analysis and the density of the minute water system; and it is supposed to be the simplest and the most effective method for preparing a disaster analysis of mountainous land shape such as the model district.

  • PDF

Development of Machine Learning based Flood Depth and Location Prediction Model (머신러닝을 이용한 침수 깊이와 위치예측 모델 개발)

  • Ji-Wook Kang;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2023
  • With the increasing flood damage by frequently localized heavy rains, flood prediction research are being conducted to prevent flooding damage in advance. In this paper, we present a machine-learning scheme for developing a flooding depth and location prediction model using real-time rainfall data. This scheme proposes a dataset configuration method using the data as input, which can robustly configure various rainfall distribution patterns and train the model with less memory. These data are composed of two: valid total data and valid local. The one data that has a significant effect on flooding predicted the flooding location well but tended to have different values for predicting specific rainfall patterns. The other data that means the flood area partially affects flooding refers to valid local data. The valid local data was well learned for the fixed point method, but the flooding location was not accurately indicated for the arbitrary point method. Through this study, it is expected that a lot of damage can be prevented by predicting the depth and location of flooding in a real-time manner.