• 제목/요약/키워드: heavy censoring

검색결과 3건 처리시간 0.013초

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Confidence Intervals for the Median Survival Time under Proportional Censorship

  • Jeong, Seong-Hwa;Cho, Kil-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.261-270
    • /
    • 2002
  • In this paper, we demonstrate the more accurate confidence intervals for median survival time under the simple proportional hazard model of Koziol and Green (1976) via the Edgeworth expansion for the distribution of the studentized ACL estimator derived in Jeong (2000). The numerical results show that the intervals, so-called test-based and reflect intervals (Slud et al., 1984), outperform normal approximating method in the small sample sizes and/or heavy censoring.

Influence diagnostics for skew-t censored linear regression models

  • Marcos S Oliveira;Daniela CR Oliveira;Victor H Lachos
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.605-629
    • /
    • 2023
  • This paper proposes some diagnostics procedures for the skew-t linear regression model with censored response. The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and student's-t distributions as special cases. Inspired by the power and wide applicability of the EM-type algorithm, local and global influence analysis, based on the conditional expectation of the complete-data log-likelihood function are developed, following Zhu and Lee's approach. For the local influence analysis, four specific perturbation schemes are discussed. Two real data sets, from education and economics, which are right and left censoring, respectively, are analyzed in order to illustrate the usefulness of the proposed methodology.