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Abstract

This paper proposes some diagnostics procedures for the skew-¢ linear regression model with censored re-
sponse. The skew-¢ distribution is an attractive family of asymmetrical heavy-tailed densities that includes the
normal, skew-normal and student’s-¢ distributions as special cases. Inspired by the power and wide applicabil-
ity of the EM-type algorithm, local and global influence analysis, based on the conditional expectation of the
complete-data log-likelihood function are developed, following Zhu and Lee’s approach. For the local influence
analysis, four specific perturbation schemes are discussed. Two real data sets, from education and economics,
which are right and left censoring, respectively, are analyzed in order to illustrate the usefulness of the proposed
methodology.

Keywords: case-deletion model, censored regression, EM-type algorithm, local influence, model
perturbation, skewness, skew-t distribution

1. Introduction

The censored regression (CR) model, or the Tobit model, has become quite common in the litera-
ture with a wide range of applications. For continuous data, the CR model usually uses the normal
distribution (N-CR). However, it is well-known that the normal distribution is sensitive to outliers,
thus a large number of parametric models to provide flexibility in modeling data have been inves-
tigated in recent years. For instance, Massuia et al. (2015) have studied CR models based on the
Student’s-¢ distribution (T-CR) and demonstrated the robustness aspects of the T-CR model against
outliers through extensive simulations. Note however that the T-CR model is not appropriate when
the data, simultaneously, present skewness and heavy tails (large kurtosis).

Recently, Lachos et al. (2022) have established a new link between the CR model and asymmetri-
cal heavy tails distributions by using the skew-t (ST) distributions (ST-CR), which allows capturing,
simultaneously, skewness and kurtosis and contains, as special cases, the normal (N), Student’s-7 (T)
and skew-normal (SN) distributions. In that paper, an analytically simple EM-type algorithm for com-
puting maximum likelihood (ML) estimates of the ST-CR model is proposed, where they show that
the E-step reduces to computing the first two moments of a truncated skew-¢ distribution with specific
parameter. The general formulas for these moments were recently derived explicitly by Lachos et al.
(2020), thus the proposed EM algorithm is exact and does not require approximations at the E and M
steps.
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Figure 1: Boxplot of the response variable in relation to the covariates for LNF data.

On the other hand, the study of influence analysis is an important and key step in data analysis
subsequent to parameter estimation. This can be carried out by conducting an influence analysis
for detecting influential observations. There are two primary approaches for detecting influential
observations. The first approach is the case-deletion approach and it is an intuitively appealing method
(see, Cook and Weisberg, 1982). Deletion diagnostics such as Cook’s distance or the likelihood
distance have been applied to many statistical models. The second approach, which is a general
statistical technique used to assess the stability of the estimation outputs with respect to the model
inputs, is the local influence approach of Cook (1986). Following the pioneering work of Cook (1986),
this method has received considerable attention recently in the statistical literature on CR models; see,
for example, Matos et al. (2013), Matos et al. (2015), Barros et al. (2018), Nuiiez et al. (2021), among
many others.

Although several diagnostics studies on CR models have appeared in the literature, to the best of
our knowledge, no study seems to have been made on influence diagnostics for ST-CR and certainly
not on the local influence analysis. In this paper, for performing diagnostics analysis in the ST-CR
model, we use the EM-type algorithm proposed by Lachos et al. (2022). Our development is based on
Zhu and Lee (2001) approach, which is a method for performing local influence analysis for general
statistical models with incomplete data, and it is based on the Q-displacement function that is closely
related to the conditional expectation of the complete-data log-likelihood in the E-step of the EM
algorithm. Moreover, the case-deletion can be studied by the Q-displacement function following the
approach of Zhu et al. (2001). A fact to be highlighted is that even robust parameter estimation
models (skewed and heavy-tailed) can present unusual observations such as outliers or influential
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Table 1: ML estimates, approximate standard errors (SE) and some information criteria for LNF data

Parameter ' N-CR ‘ SN-CR . T-CR ' ST-CR
Estimate SE Estimate SE Estimate SE Estimate SE

Bo 32.460 1.098 12.311 1.152 29.355 0.805 14.958 1.209

Bi —7.288 1914 -4.563 1.497 -5.784 1.419 -4.689 1.262

B2 6.349 1.746 5.934 1.306 6.307 1.445 6.201 1.230

o? 283.318 14.499 673.830 45.412 137.457 12.557 358.136 43.547

A - - 4.002 0.632 - - 2.682 0.506

v - - - - 35 - 4.8 -
— log-like * 2058.966 2007.595 2023.158 1995.205
AIC 4125.931 4025.191 4056.317 4002.410
BIC 4142.877 4046.373 4077.498 4027.828
CAIC 4146.877 4051.373 4082.498 4033.828
HQIC 4132.575 4033.495 4064.621 4012.375

*log-like: log-likelihood.

observations. Thus, diagnostics methods are still important tools for detecting anomalies in the fitted
model. Moreover, we believe that the results of this paper are a necessary supplement of Lachos et
al. (2022).

The paper is organized as follows. In Section 2, the ST-CR model is defined, and an EM-type
algorithm for obtaining the ML estimates are briefly described. In Section 3, we provide a brief sketch
of the local influence approach for models with incomplete data, and also develop a methodology
pertinent to the ST-CR model. Four different perturbation schemes are considered. Section 4 discusses
two applications involving letter-name fluency (LNF) test in Peruvian students and housewife wages.
Finally, Section 5 concludes with some discussion and possible directions for future research.

2. The skew-r censored linear regression model

In this section, we consider the skew-f censored linear regression model (ST-CR). Further information
on this topic can be found in Lachos er al. (2022). To understand this model, it is necessary to first in-
troduce some concepts and terminology. We will begin by defining the skew-normal (SN) distribution.
As introduced by Azzalini (1985), a random variable Z has a SN distribution with location parameter
u € R, scale parameter o> € (0, co) and skewness parameter A € R, denoted by Z ~ SN(u, 02, 2), if its
probability density function (pdf) is given by ¢sn(z | i, 0%, A) = 2¢n5(z | pt, o ON( Az~ ) /0) | 1, T72),
with ¢n(- | u,0?) and ®y(- | u, 0%) denoting the pdf and the cumulative distribution function (cdf) of
the normal distribution (N(u, 0%)), respectively. We denote the cdf of Z by ®gy(-|u, 0>, 2). A useful
way to express the stochastic nature of Z can be provided by the following representation

Z=pu+AT +T2T), @2.1)

where A = 06, = (1 =6%)02,6 = A(1 + 22712, T = |Ty|, and Ty and T} are independent standard
normal random variables. Here, | - | denotes the absolute value. It should be emphasized that this
stochastic representation is valuable not only for generating random samples but also for calculating
moments and exploring additional notable characteristics.

Let Z ~ SN(0,02,1) and U ~ gamma(v/2,v/2) assuming that Z and U are independent. Here,
gamma(v/2,v/2) denotes the gamma distribution with scale and shape parameters equal to v/2. We
say that the distribution of ¥ = u + U~'/2Z is a skew-t distribution with location parameter u € R,
scale parameter o> € (0, c0), skewness parameter A € R and degrees of freedom v € (0, c0). We use
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Figure 2: Martingale-type residuals under the N-CR, SN-CR, T-CR and ST-CR models for LNF data.

the notation ¥ ~ ST(u, o2, 4,v), with pdf given by

os7 (V1 1,07, 4,v) = 207 (y| p, o2, v) @1

1
v+ 1\2
A v+ 1],
(2]

where A = A(y — u)/o-and d = (y—p)*/o?. In the same way, ¢7(- | i, 0%, v) and @ (- | u, 0%, v) denote
the pdf and the cdf of the student’s-¢ distribution (T(u, 0%, v)), respectively. Some particular cases
of the skew-t distribution are the skew-Cauchy distribution (v = 1) and the student’s-¢ distribution
(A4 =0). Also, when v — oo, the skew-normal distribution arises as a limit case. Furthermore, the cdf
of a skew-f random variable, denoted by ®g7(:|u, o2, A, v), is given by

Y~ H
o

CDsr(yIu,Gz,/LV)=2<DT2( elIO,Z,V),

where e; = (1,0)7, X = ( Jé _1‘5 ), and @7, is the cdf of the bivariate student’s-¢ distribution. More-

over, the conditional distribution of Y given U is
Y| U=u~SN(wu'o 1), U~ gamma(v/2,v/2). (2.2)

For additional properties on the skew-# distribution, such as its truncated version, truncated moments,
linear transformations, and marginal and conditional distributions, we refer to Lachos et al. (2022).
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Figure 3: Approximate generalized Cook’s distance (GD;) under the N-CR, SN-CR, T-CR and ST-CR models
for LNF data.

Lachos et al. (2022) considered a linear regression model where the responses are observed with
errors which are independent and identically distributed (iid) according to some ST distribution, as
follows:

Yi=x/B+oe, & SSTO,1,4,v), i=1,....n, 2.3)
where Y;, i = 1,...,n are the responses, § € RP*! is unknown regression parameter vector, which
contains the intercept Sy, and xiT = (1, x1,...,X;p) is a vector of known characteristics such that
x;; is the value of the j" explanatory variable for subject i. Under this setup, we have that ¥; g
ST(xl.TB, ot Ay, i=1,...,n To simplify the mathematical derivations, we will assume that the
observations can be left censored, which means that the observations are of the form:

K; if Y;<k;
Y, = i ) i = Kj, 2.4
obs; { Yl if Yz > K;, ( )

i =1,...,n, for some threshold point ;. The model defined in (2.3) and (2.4) is called the skew-
t linear censored regression (ST-CR) model. To obtain additional information and a more detailed
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Figure 4: Estimated u; under the T-CR and ST-CR models for LNF data. The red ball-shaped points represent
the imputed values for the censored values.

explanation of the topic at hand, see Massuia et al. (2017) and Mattos et al. (2018). Note that the
right censored problem can be represented by a left censored problem by transforming the response
Yobsi to _Yobs,--

Supposing that are m censored values of the characteristic of interest, we can partition the ob-
served sample y,, in two subsamples of m censored and n — m uncensored values, such that y,,; =
{Kls- oKy Vimsds - > Yn). Let@ = (BT, 02, 1,v)T be the vector with all parameters of the ST-CR model,

so the log-likelihood function for € is given by

- I; 1-I;
€01 Yory) = log| | [[@sri 1 x]B, 0 4| [¢s0i 1 X[ B, 07, 4,7)
i=1

log [@s7(; | X B, 0, 4,v)| + Z log [¢s (i X/ B, 0%, 4,v)],

i=m+1

M=

1

where [; = 1 if y; < k; and [; = O otherwise. As the observed log-likelihood function involves
complex expressions, it is very difficult to work directly with £(6 | y,s;), either for the ML estimation
or for the local influence analysis. For the ST-CR, an EM-type algorithm has been developed by
Lachos et al. (2022) to perform the ML estimation. In their estimation procedure, the unobserved y;
is considered as a realization of the latent unobservable variable Y; ~ ST(xl.TB, ot Av),i=1,...,m.
The key was to consider the augmented data {Y,ps, Y1, -« s Vim> U1y - - » Un, 1, - - - » I}, that is, they treat
the problem as if y; = (y1,...,ym)" were in fact observed. Hence, under the representation (2.2), the

EM-type algorithm is applied to the complete-data log-likelihood £.(@ | yops. Y1, 0, t), given by

1l
—_

n 1 1 <
(0] Yopsoyr.w0) = € = S log + Zl logu; = - Zl wi(y; — ] B — Aty

+ log h(u; | v),

n
i=1

where C is a constant that does not depend on the parameter of interest 0, t = (r1,...,%,)" is a
vector of independent half-normal random variables as defined in (2.1), u = (uy,...,u,)" is a vector
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of independent gamma random variables as defined in (2.2), and h(:|v) denotes the gamma density
with scale and shape parameters equal to v/2. For the current value 8%, where the superscript (k)
indicates the estimate of the related parameter at the stage k of the algorithm, the E-step of the EM-
type algorithm requires the evaluation of the so-called Q-function:

0(816%) = Ego [£c (0| Yobs, Y. U T) | Yoo

where E4» means that the expectation is obtained using 6™ instead of §. Observe that the expression
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Figure 6: Relative changes on the ML estimates of 8,81 and 3, when fitting a N-CR, SN-CR, T-CR, and ST-CR
for different contamination of ¢ on subject 176. % change = 100 X ((B€) — 6)/0), where § denotes the original
estimate and 9(5) the estimate for the contaminated data.

of the Q-function is completely determined by the knowledge of the expectations
&ri(0%) = Ego [U,T{Yf | yubs’.] , rs=0,1,2.

Thus, ignoring constants that do not depend on the parameter of interest, the Q-function can be written
in a synthetic form as follows:
®) =" _Lly (9P — 280 (6% xT (™) (xTB)
0(610) = -2 10T - o > [802, (6%) = 2601 (60) X7 B + Eooi (6°) (x7 B)

+A2E50; (60) - 28811 (69) + 24810 (6°) xT B]

+ > Ego [log h(U; | )] Yons ] @.5)

i=1
and depending if the observation is censored or not and by using known properties of conditional ex-
pectation, the expectations involved in the Q-function (E-step) will take specific, analytic, and closed
forms Lachos et al. (2022). For instance, for censoring observations, these expectations take the form

Ersi (o(k)) = Ea(k) [U,TerlJ | Y; < K,']
=Ego [VE[U[T] | U VI Vi1 Vi < k], 15=0,1,2,

which can be easily obtained by using Proposition 2 given in Lachos et al. (2022). The M-step
requires the maximization of (2.5) concerning 6, which leads to closed-form equations. As our main
focus here is not on the ML estimation, we refer the interested readers to see Lachos er al. (2022) for a
detailed discussion of the EM-type algorithm for the ST-CR model. In this work, we suppose that the
parameter v associated with the mixture variable U is known — see, for instance, Lange et al. (1989),
Berkane et al. (1994), Osorio et al. (2007), Lucas (1997) and Massuia et al. (2015) for an interesting
discussion on the assumption of fixed degrees of freedom for the student’s-t distribution. In this case,
the Akaike information criterion in a grid of values of the degrees of freedom is recommended for
determining the optimum value of v.
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Table 2: Means and standard deviations for study variables

n Wage Age Education Youngkids Experience

Full sample 753 - 42.54 (8.07) 12.29 (2.28) 0.24 (0.52) 10.63 (8.07)
Working women 428 4.18 (3.31) 41.97 (7.72) 12.66 (2.29) 0.14 (0.39) 13.04 (8.06)
Non-working women 325 - 43.28 (8.47) 11.80 (2.18) 0.37 (0.64) 7.46 (6.92)

3. Influence diagnostics

Influence diagnostic techniques consist of evaluating the sensitivity of the parameter estimates of
a particular model when perturbation occurs either in the dataset or in the model’s underlying as-
sumptions. There are two main approaches to detecting influential observations. The first one is
the case-deletion technique (Cook and Weisberg, 1982), in which the effect or influence of a given
observation is measured by comparison of parameter estimates before and after its deletion. This is
done by analyzing one or more fitted models after the exclusion and then assessing the result by some
metrics such as the likelihood distance or Cook’s distance. The second method is the local influence
approach Cook (1986), which evaluates the changes in the results of the analysis as a consequence of
a minor perturbation of the subject, not its total deletion. In the next subsections, we introduce the
case-deletion measures and the local influence measures to the censored data on the basis of the Q-
function previously determined in the E-step of the EM algorithm. We first consider the case-deletion
measures, then the local influence and finally the perturbation schemes used.

3.1. Case-deletion measures

Case-deletion is a common approach to study the effect of dropping the i’ case from the dataset. From
now on, the subscript “[i]” will denote the original dataset with the i"* case deleted. For example,

Yii1 = (Yonsip> Yigip» Upgs Tpip) corresponds to the complete data with the i"" observation deleted. Let

élil = (ﬁ;],é'%i],;lmf be the maximizer of the function Q;(@ | 9) = Eg[&(@ | Yerip) | Yobsiinl, where

0= (BT, 52, /Al)T is the ML estimates of 8. To assess the influence of the i case on 9, we compare the
difference between 8;; and 8. If deletion of a case seriously influences the estimates, more attention
should be paid to that case. In other words, if 9[,-] is fairly far from 9 in some sense, then the i”* case
could be considered influential. Since 8y, is needed for every case, the total computational burden
involved can be quite heavy, so the following one-step approximation 8y; is used to reduce the burden
Cook and Weisberg, 1982:

é[i] =9+{—Q(9|@>}_1 Q[,‘] (9|9), for i = 1,...,n, (31)
where
. 00n(016 . 0P0(016
Q[i](ausv):%g_é and Q(0|0):$0_9 (3.2)

are the gradient vector and the Hessian matrix evaluated at @, respectively. In particular, the Hessian
matrix is an essential element in the method developed by Zhu et al. (2001) (see also Zhu et al., 2009)
in order to obtain the measures for case-deletion diagnosis and for local influence of a specified pertur-
bation scheme. These formulas can be obtained quite easily from equation (2.5). The elements of the
Hessian matrix are presented in Appendix. The gradient vector, QUJ(G? | §) = (Q[l.] ﬂ(é | ), Q[,]U.z @]
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8), 01118 | 9)), have elements given by:

L 000 (016 E

Op (016) = % 0.0 1;2/1 E,

. 00u (016 2. ) FER
QU]UZ(G'G):%O—QZ_F[OI_D_ ;:_2/1 E2[i]+/1 15:/1253[[] ’
o 00i(018) n-D1 A . 14202 . . ,
Q[z‘]/1(9|‘5’)=—0/l 0=(9:—1+/A12 ~ = 2[i]+—6_mE3[i]_/ljZ¢;820j(g)’

where

El[i] = ; [Xj(gOlj (é) - 800/' (é) XjX;-rB - \/%stl()j (9)} s
EZ[i] = Z [802]' (é) - 2801j (@) X;B + 800j (9) (X;B)z] and E}[i] = Z [811j (9) - 810]‘ (9) X;—B] .

i Jj#i

Case-deletion measures can be developed to assess influential observations, such as the general-
ized Cook’s distance and the likelihood distance (Zhu et al., 2001). To assess the influence of the i
case on the EM estimate 8, we need to compare 8;; and 8. If 8y is far from @, in some sense, then the
i case is regarded as influential. Based on the metric for measuring the distance between ; and &
proposed by Zhu et al. (2001), we consider here the following generalized Cook’s distance:

GD; = (B - 8) {-0(210)} (011 ~0). i=1....n G-

Upon substituting (3.1) into (3.3), we obtain the following approximation of the generalized Cook’s
distance:

GD! = 0 (818) {-0(818))" 01 (818).

Another measure of the influence of the i case is the following Q-distance function, similar to

the likelihood distance LD; (Cook and Weisberg, 1982), defined as:

QD; =2{0(818)- 0(8118)}. (3.4)

We can compute an approximation of the likelihood displacement QD; by substituting (3.1) into (3.4),
resulting in the following approximation QDi1 of QD;:

QD] =2{Q(816) - 0 (811 8)}.

The approximated measures QDi1 and GDi1 have been satisfactorily applied in the context of censored
regression models by Matos et al. (2015) and Massuia et al. (2015).
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Figure 7: Scatter-plots, histograms, and correlations for the indicated variables using Mroz data.

3.2. Local influence

In this section, we derive the normal curvature of the local influence on the basis of the Q-function
previously determined for some common perturbation schemes, either in the model or in the data.
Thus, consider a perturbation vector w = (wi,...,w,)" varying in an open region Q c R$. In
general, we have g = n. Let £.(0, w | Y.) be the complete-data log-likelihood of the perturbed model.
We assume there is a wy € Q such that £.(0, wg | Y.) = €.(0 | Y.) for all 8. Let us define

Q(0,018) =Ey[. (8,01 Yo)| Yors] and
B(w) = argmaxg {0 (6. w1 8)} = (B@)™. 6% (). Aw))" .

The influence graph is then defined as @(w) = (W', fo(w))T, where fp(w) is the O-displacement
function, defined as follows:

fo(w) =2[Q(818) - 0(bw)| 8)].

Following the approach of Cook (1986) and Zhu and Lee (2001), the normal curvature Cy, g of a(w)
at wy in the direction of some unit vector d can be used to summarize the local behavior of the Q-
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displacement function. Let

) 0(6. )

0 (bw)| 9)
o= and Qu,= ——F—————

900w™  |9_pc) 0wdw™

W=w,
Then, it can be shown that

Croa =20 Gnd =207V [-0(01))” Vo,

where O(@ | 9) is as defined in (3.2).

Following the same procedure adopted by Cook (1986), the information provided by the symmet-
ric matrix —Qyy, is quite useful for detecting influential observations. First, we consider the spectral
decomposition

8
20w, = Z LiErey
k=1

where {({, &x),k = 1,..., g} are eigenvalue—eigenvector pairs of —ZQwO withly > - >4 > 4 =
-+ = 0 and orthonormal eigenvectors &, for k = 1,...,g. Zhu and Lee (2001) proposed to inspect
all eigenvectors corresponding to nonzero eigenvalues to capture more information, according to the
following method:

&= é“l+£:—k+§’ & = (8%1’ . "glzg) and - M(0) = Z Lisi.
; =1

Let M(0); = X1, Zk‘giz be the /" component of M(0). The assessment of influential cases is based on
visual inspection of M(0);, [ = 1,..., g plotted against the index /. The ["* case may be regarded as
influential if M(0); is larger than a specified benchmark.

There is some inconvenience when using the normal curvature to decide about the influence of
the observations, since Cy,q may assume any value and it is not invariant under a uniform change
of scale. Based on the work of Poon and Poon (1999), Zhu and Lee (2001) considered using the
following conformal normal curvature:

Croa
tr [—ZQwO] ’

whose computation is quite simple and also has the property that 0 < By, 4 < 1. Let d; be a basic
perturbation vector with /" entry equal to 1 and all other entries equal to 0. Zhu and Lee (2001)
showed that M(0); = By, q, for all . We can therefore obtain M(0); via By, 4,

So far, there is no general rule to judge how large the influence of a given case is. Let M(0)
and SM(0) denote, respectively, the mean and the standard error of {M(0);; [ = 1,..., g}. Using the
fact that the vectors g, are orthonormal, it is easy to prove that M(0) = 1/g. Poon and Poon (1999)
proposed to use 2M(0) as a benchmark for M(0). However, one may use different functions of M(0).
For instance, Zhu and Lee (2001) proposed using M(0) + 25M(0) as a benchmark to take into account
the variance of {M(0);; I = 1,...,g}. According to Lee and Xu (2004), the exact choice of the
function of M(0) as the benchmark is subjective. For example, they proposed using M(0) + ¢*SM(0),
where c¢* is a selected constant, and depending on the application, ¢* may be taken to be any value. In
this paper we use ¢* = 3.5.

Bj,a =
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Table 3: ML estimates, SE and some information criteria for Mroz data
Parameter N-CR SN-CR T-CR ST-CR
Estimate SE Estimate SE Estimate SE Estimate SE
Bo -2.148 1.625 -4.282 1.408 -0.826 1.115 0.382 1.081
Bi -0.169 0.027 -0.187 0.026 -0.164 0.021 -0.136 0.019
B2 0.678 0.078 0.610 0.072 0.580 0.056 0.594 0.052
B3 -2.705 0.408 -2.942 0.400 -2.612 0.323 —2.266 0.300
o 0.218 0.027 0.226 0.024 0.214 0.019 0.193 0.019
o? 18.996 0.697 31.812 1.513 7.643 0.733 11.507 1.997
A - - 2.363 0.552 - - -1.178 0.243
v - - - - 3.4 - 2.1 -
— log-like * 1440.062 1416.845 1373.032 1367.074
AIC 2892.125 2847.690 2760.064 2750.149
BIC 2919.869 2880.059 2792.433 2787.141
CAIC 2925.869 2887.059 2799.433 2795.141
HQIC 2902.813 2860.160 2772.534 2764.400

* log-like: log-likelihood.

3.3. Perturbation schemes

We will evaluate the matrix V under the following perturbation schemes for the ST-CR model: Case-
weight perturbation to detect observations with outstanding contribution of the log-likelihood function
and that can exercise high influence on the maximum likelihood estimates; scale perturbation of o2,
which can reveal individuals that are most influential, in the sense of the likelihood displacement on
the scale structure; response perturbation of the response values, which can indicate observations with
large influence on their own predicted values; and finally explanatory variables perturbation. For each
perturbation scheme, we have the partitioned form:

where

B 0(6.010)

Vg = Pow™

b}

6-0(w,)

Vo, = (V. V.. V])

) 0(6.w| )

d020w™

with Vg € RP*DX¢ ¥ , € R and V,; € R18.

3.3.1. Case-weight perturbation

‘0—9«00)

T
)

and V, =

0 (6.0
00w™

0-0ws)

First, we consider an arbitrary attribution of weights to the expected value of the complete-data log-
likelihood function (perturbed Q-function), which can capture departures in general directions, repre-

sented by writing:

0(6,018) = Ey[£: (6,0 Yo) | Yobs] = ) wiBp [6:(B1 Yo) | Yors] = D ;0:(818).

i=

1

Here, w = (wi, ..., w,)" isannx1 vectorand wy = (1,...,1)7. Note that forw; = 0andw; = 1, j # i,
the i observation is dropped from the log-likelihood function for complete data. For this perturbation
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scheme, we find:

A2 A A
Vg = L A X7 diag {€01 (8)} - X" diag {A} - T %X diag {10 (8)}].
Voot [1; - ITPBT SV
262 62 loa
pl A . 1422 o0 st /n
VA=1+22 ;_E ' & 1+,12DT 185(6).

where X is a design matrix with rows X/, Es@ = (&), ....E8m@0), r,s = 0,1,2 and 1,, is
an x 1 vector of ones. A, B and D are n—dimensional vectors with coordinates A; = SOOi(@))X[.T/A},
B; = 802i(8) — 2801,(0)x] B + EoniB)(xT B)* and D; = &11:(8) — E10i(B)x] B, respectively.

3.3.2. Scale perturbation

To study the effects of departures from the assumption regarding the scale parameter o>, we consider
the perturbation 0*(w;) = w; ', for i = 1,...,n. Under this perturbation scheme, the non-perturbed
model is obtained when wg = (1,...,1)T € R". Moreover, the perturbed Q-function is as in (2.5),
switching o(w;) and @ with o and 8%, respectively. The matrix Vw, has the following elements:

Vg = o |XTdiag {6 (9)) - X diag (A} - N%deiag{alo(a)},
V2= 1 lt;lzﬁT +/l D and
262 | 62
A 1+22%
vV, = —— T —DT
e T siv e

3.3.3. Response perturbation

A perturbation of the response variables Y;, i = 1,...,n, can be introduced by replacing Y, by
Yops,(wi) = Yops, + w;Sy, where S, is a scale factor that can represent the standard deviation of the
censored response. Now substituting Y, (w;) into (2.4), we can write the perturbed model as:

() = ki(w;) if Y <«
IOV Yiw) i Y >k

where «;(w;) = k; — w;S, and Y;(w;) = Y¥; — w;S,. Hence, the perturbed Q-function follows (2.5), with
Ersi(0®) = By [UiTTY? | yobs,] replaced by &40, w;) = By [UiTTY (i) | Yobs(w;)]. Under this
perturbation scheme, the vector wy, representing no perturbation, is given by wy = 0 € R" and V),
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Figure 8: Martingale-type residuals under the N-CR, SN-CR, T-CR and ST-CR models for Mroz data.

has the following elements:

1+22 ,
Vg = TSyXleag {800<

TS

)}

V= 2 o () - A7) - “—;”aﬁ) (6)]. and

62| 62 20
~ 32
V.= —?T—isy €6, (8) - AT] + %Sﬁfo (6)

3.3.4. Explanatory variables perturbation

Here, we consider the influence that perturbation of the explanatory variables can produce on the
parameter estimates. In this case, we are interested in perturbing a specific explanatory variable, thus
we consider the perturbation XL = xlT + w;S/1], S, is a scale factor that can represent the standard
deviation of the " explanatory variable and 1] = (0,...,1,...,0) is a 1 X p vector with 1 in the
# column, t = 1,..., p. Hence, this case covers situations where x is measured with error. The
perturbed Q-function is as in (2.5), switching x;/ with x| and the no perturbation case is obtained by
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Figure 9: GD; under the N-CR, SN-CR, T-CR and ST-CR models for Mroz data.

taking wo = 0. Under this perturbation scheme, V,, has the following elements:

Vs = 1;—2225,1, [agl (6) - 247 - % " (9)},
) 2 A 11 + 22 R
V= —%13,3[1;—21 &5, (6) - AT] - % 1 (8)|. and

vi= 0|2 e ) 47) - 2 )]

Note that it is impossible to give details for all the perturbation schemes that are of interest.
However, as long as we can find an appropriate w, and as long as the perturbed complete-data log-
likelihood function €.(6, w | Y.) is smooth enough, so that the required derivatives in the diagnostic
measures are all well defined, we can conduct the local influence analysis without much difficulty. In
the next section, two applications to real data are presented in order to illustrate the performance of
the developed methodology. R code for analyzing the application may be downloaded from the third
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Figure 10: Estimated u; under the T-CR and ST-CR models for Mroz data. The red ball-shaped points represent
the imputed values for the censored values.

author’s homepage, with website address https://github.com/hlachos/skewt-censored.

4. Applications

We illustrate the proposed methods with the analysis of two real data sets previously analyzed using
CR models.

4.1. Letter-name fluency data

For illustration purposes, we apply the techniques presented so far to the letter-name fluency (LNF)
test in Peruvian students, which is a standardized, individually administered test that provides a mea-
sure of letter-name knowledge (LNK) and spelling abilities. In this test, teachers administer timed
1-minute fluency assessments to children, and then compare the results with established norms in or-
der to determine how the students are performing in this task and if they are at risk for future academic
problems. LNF is a continuous right censored variable related to the average of letters read correctly
in an interval of time and not a discrete variable.

The data were originally reported from the early grade reading assessment (RTI-FDA, 2008). It
contains 511 students, with 479 uncensored and 32 right censored observations (6.26%). Conse-
quently, if we are interested in the mean of the LNF response for one group, this quantity could be
underestimated due to the presence of censored observations. For that reason, a censored regression
model able to take into account observation lying below or above a threshold could be more appro-
priate for estimating the true mean of the LNF response for different groups of interest. Lachos et
al. (2022) have analyzed this data set and pointed out the following findings: 1) the mean and the
standard deviation of the censored observations are higher in comparison with uncensored (causing
the estimated mean for LNF to be underestimated); 2) some degree of right skewness and kurtosis on
the response variable (reveling a departure from the normal distribution); and 3) the data are better
suited to the ST-CR model with heavy tails than all its competitors (N-CR, SN-CR and T-CR). Here,
we revisit this data set with the aim of applying the Zhu and Lee (2001) local influence approach. As
in Lachos et al. (2022), the proposed censored model is given by:

Y; = Bo + B1 Zone; + B, Grade; + B3 Gender; + o€, i=1,...,511,
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Figure 11: Index plot of M(0) under case-weights (left) and scale (right) perturbations for the four fitted models
for Mroz data. The horizontal lines delimit the Lee and Xu (2004) benchmark for M(0) with ¢* = 3.5.

where Y; is the number of correctly letters read by the i student in one minute; the zone where

the respondent lives (0 = urban, 1 = rural); grade (0 = 2nd grade, 1 = 3rd grade) and gender (0 =
male, 1 = female). For the summary of the response variable in the presence (censored) and absence
(uncensored) of censoring, we refer the interested reader to see Table 4 in Lachos et al. (2022). Based
on the results given in Lachos et al. (2022), where the covariate gender is non-significant, we will
carry out further analyzes, without this covariate.

The application is organized as follows. First, we have fitted the N-CR, SN-CR, T-CR and ST-CR
for the LNF data set. Although not being formal tests, we compare the four models by inspecting some
selected information criteria and the plots of the Martingale-type residuals. After, in order to identify
influential observations, we generate graphs of the generalized Cook’s distance (GD;), as explained in
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Section 3.1. Next, we have identified influential observations for the LNF data set using M(0) from the
conformal curvature By, g, and the first two perturbation schemes described in Section 3.3. Lastly, we
assess the robustness of the ST-CR model by studying the influence of a single outlying observation
on the ML estimate of 6.

Figure 1 presents the boxplot of the number of correctly letters read in relation to zone and grade. It
appears that the median of the response variable is slightly higher for the urban schools and 3rd grade.
Also from this figure, it is possible to identify that the median is higher for the urban, compared to the
rural schools, as well as, 3rd grade, compared to 2nd grade.

Table 1 contains the ML estimates for the parameters of the four models, the approximate standard
errors (SE) based on the empirical information matrix (Lachos et al., 2022) and some information
criteria. The two covariates (zone and grade) are significant in all fitted models. There is agreement
in the signs of the 8y — 5, between the models, although the estimated coefficients are a little different.
Moreover, the SEs for 8; and 8, under the ST-CR model are smaller than the other models, indicating
that this model produces more accurate ML estimates. According to Lange et al. (1989), we choose
the value of v by maximizing the profile likelihood function as follows: Suppose 6 = (6],6,;)7,
where 6, is of interest and 6, is a nuisance parameter, then the profile log-likelihood of 6, is {,(8,) =
maxg, (61, 6,). Using this procedure, we found v = 3.5 for the T-CR model, and we found v = 4.8 for
the ST-CR model. The estimated values found of v are small, indicating the lack of adequacy of the
N-CR model for the LNF data.

We now compare the models by inspecting some information criteria. Four criteria were selected:
The Akaike information criteria (AIC, —2{’(@) + 2p), Bayesian information criterion (BIC, —2{’(@) +
log(n)p), consistent AIC (CAIC, —2¢ (9) + (log(n)+ 1)p) and Hannan-Quinn criterion (HQIC, —2¢ (9) +
2 log(log(n))p), where p is the number of free parameters in the model. A lower value of these
measures indicates that a closer fit of the model to the data. The results are also given in Table 1,
where we observe that the ST-CR model outperforms all its competitors (N-CR, SN-CR and T-CR).

In order to study departures from the error assumption as well as the presence of outliers, we
analyzed the transformation of the martingale type residual, denoted by ry,, proposed by Barros et
al. (2010) for censored models. These residuals are defined by

ru, = sign (ra) =2 [ru, + pilog (oi = ).

fori = 1,...,n, where ry, = p; + log(S (vi:0)) is the martingale residual proposed by Ortega et
al. (2003) — see more details in Therneau et al. (1990), with p; = 0,1 indicating whether the i
observation is censored or not, respectively, sign(ry,) denoting the sign of ry, and S (y;; 0 = Py(Y; >
y;) representing the survival function evaluated at y; and the EM estimate & of 6. As observed by
Ortega et al. (2003) these residuals can be used to assess the quality of the model fit. In our case,
we generate envelopes based on these residuals for the four models, which are shown in Figure 2. It
can be seen that the skew-f distribution accommodates the observations in a better way than the other
models.

Figure 3 shows the approximate generalized Cook’s distance GD; under the N-CR, SN-CR, T-CR
and ST-CR models. A high value for GD; indicates that the i observation has a high impact on the
maximum-likelihood estimate of the parameters. We can see from these figures that observations 176,
243,304, 307,368, 371 and 507 appear to be outliers under the N-CR fit; under the SN-CR fit, we can
see observations 3 and 197; on the other hand, no observation is detected under the T-CR and ST-CR
fits, showing the robustness of these two heavy-tailed models.

When we use distributions with tails heavier than the normal and skew—normal ones the EM
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algorithm allows to accommodate discrepant observations attributing to them small weights in the
estimation procedure. In Figure 4, we present the Mahalanobis distance, given by di2 = — xlT,fi') /67
vs, the estimated weights u; = 800,-(@)), fori =1,...,511, considering the T-CR and ST-CR models.
The weights for the normal and skew—normal distribution are indicated in Figure 4 as a continuous
line. Note from these figures that for the T and ST distributions #; is inversely proportional to the
Mahalanobis distance. Therefore, the student-¢ and skew-# distributions may naturally attribute dif-
ferent weights to each observation and consequently control the influence of a single observation on
the parameter estimates. These results agree with similar considerations, presented in Osorio et al.
(2007), in a symmetric context.

Next, we conduct a local influence study based on M(0) according to Sections 3.2 and 3.3. Here,
we used the criterion M(0); > M(0)+3.5SM(0),[ = 1,...,511, to discriminate whether an observation
is influential. The Figure 5 displays the results for the N-CR, SN-CR, T-CR, and ST-CR models under
the case-weight perturbation and scale perturbation. From these figures, it is noted that observations
176,243, 304, 307, 368, and 371 are identified as influential in both perturbations considered under the
N-CR model. Two observations (3 and 197) are identified as influential in the case-weight perturbation
and one (176) in the scale perturbation under the SN-CR model. No observation was identified as
influential under the T-CR and ST-CR models in both perturbations, assuming c¢* = 3.5. As expected,
the influence of such observations is reduced when we consider distributions with heavier tails than
the normal or skew-normal ones. For this data set the student’s-¢ and skew-t models accommodate
slightly better the influential observations.

The robustness of the ST-CR model can be studied through the influence of a single outlying
observation on the ML estimate of #. In particular, we can asses how much the ML estimates of 6
influences by a change of ¢ units in a single observation Y;. We replace a single observation y; by
vi(€) = y; + &, and record the relative change in the estimates ((B(&) — 6)/6), where 6 denotes the
original estimate and 6(¢) the estimate for the contaminated data. In this example, we contaminated
the observation on subject 176 and varied & between —50 and 50 by increments of 10. In Figure
6, we have presented the results of relative changes of the estimate 8 = (By,81,82)", for different
contamination of &, under N-CR, SN-CR, T-CR, and ST-CR. As expected, the T-CR and ST-CR
models are less adversely affected by variations of ¢ than the N-CR and SN-CR model.

4.2. Married women'’s labour supply

The second application deals with left censored econometric data (Cameron and Trivedi, 2005, Sec-
tion 16.2, Page 530). We use a real data set previously analyzed by Mroz (1987) consisting of obser-
vations on 753 married white women for 21 variables, between 30 and 60 years old in 1975 (interview
year: 1976), with 428 (56.84%) of them working at some time during that year and therefore 325
(43.16%) of them have an average hourly wage equal to zero. Thus, we can consider these last ones
as left censored with x; = 0, i = 1,...,n. We name the data set as Mroz data hereafter. The response
variable (Y) is the wife’s average hourly wage (in US dollar for the year 1975) and the considered
covariates are: Wife’s age in years (age), wife’s education in years (education), number of children
smaller than 6 years old in household (youngkids), number of children between ages 6 and 18 in
household (oldkids), and years of wife’s previous labor market experience (experience). The sample
characteristics are presented in Table 2. Oldkids was hidden, as its mean (1.35) and standard deviation
(1.32) are the same for both the full sample and the working woman sample. The data used may be ob-
tained from the AER package (see, Kleiber and Zeileis, 2008) with the command data("PSID1976™)
in the R software (see, R Core Team, 2022).
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Figure 7 shows the scatter-plot matrix, histograms, and correlations for assessing the relationships
between variables, simultaneously. Initially, the histogram of wages confirms the asymmetric behav-
ior of this variable. Furthermore, note that the wife’s average hourly wage increases as the wife’s
education in years increases and as her experience in years increases. The largest correlation between
the response variable and covariates is 0.32, detected between education and wage, whereas the largest
correlation between covariates is —0.43, detected between age and youngkids.

Barros et al. (2018) have analyzed this data set with the same covariates and pointed out that the
covariate oldkids can be considered non-significant under the Tobit-normal and Tobit-¢ models. Based
on these results, we will carry out the analyzes again, without this covariate, using the left censored
N-CR, SN-CR, T-CR and ST-CR models for comparison purposes. As in the first application, our
goal is applying the proposed diagnostics techniques, illustrating the robustness of the ST-CR model
in relation to its competitors. Therefore, the proposed censored model for the Mroz data is given by

Y; = Bo + B1 Age; + B> Education; + 83 Youngkids; + 84 Experience; + o, i=1,...,753.

The second application is organized as follows. First, we have fitted the N-CR, SN-CR, T-CR
and ST-CR for the Mroz data set. Next, we compare the four models by inspecting some selected
information criteria. After, in order to identify influential observations, we generate graphs of the
generalized Cook’s distance (GD;), as explained in Section 3.1. Lastly, we have identified influential
observations for the Mroz data set using M(0) from the conformal curvature By, g, and the case-weight
and scale perturbation schemes described in the Section 3.3.

The ML estimates and the corresponding approximate standard errors (SE) based on the empir-
ical information matrix (Lachos et al. (2022)) for the coefficients are shown in Table 3. This table
also contains some information criteria. The four covariates are significant in all fitted models. The
intercept (Bp) is significant only under the SN-CR fit. There is agreement in the signs of the estimated
regression coefficients (8; — B4) between the models, and they are relatively closer, compared to the
result found in the first application. We noted that the sign of the estimated asymmetry coefficient (1)
has changed in the ST-CR compared to the SN-CR fit, remembering in the ST-CR fit both asymmetry
and kurtosis are modeled simultaneously, while in the SN-CR the latter is not taken into account.
Again, under the ST-CR model, the SEs for all Bs are smaller than the other models. This reinforces
the indication that this model produces more accurate maximum likelihood estimates than the N-CR,
SN-CR and T-CR models. For this application, we found v = 3.4 for the T-CR model, and we found
v = 2.1 for the ST-CR model. The estimated values found of v are again small, indicating the lack of
adequacy of the N-CR model for the Mroz data. Finally, we note that the lowest values of the selected
information criteria, highlighted in the table, occurred for the ST-CR model. The corresponding plot
of the Martingale-type residuals including a simulated envelope are shown in Figure 8.

Figure 9 shows the approximate generalized Cook’s distance GD; under the N-CR, SN-CR, T-CR,
and ST-CR models for Mroz data. A diagnostics analysis based on this measure highlights strongly
the observations 185, 349, 366, 394, and 408 under the N-CR fit; for the other models, we have fewer
highlighted observations: 598 and 692 for SN-CR, 400 and 598 for T-CR, and 400 for ST-CR. For
example, the observation 408 corresponds to one married white woman with 36 years, 12 years of
education, 1 kid smaller than 6 years old, 4 years of previous labor market experience, and an average
hourly wage of 25 dollars; on the other hand, in contrast, the observation 400 corresponds to one
married white women with 38 years, 15 years of education, 2 kids smaller than 6 years old, 17 years
of previous labor market experience and an average hourly wage of just 5.1 dollars.

The Mahalanobis distance @> = (y; — x] #)/6? vs, the estimated weights u; = (@), for i =
1,...,753, considering the T-CR and ST-CR models are shown in Figure 10. The corresponding
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weights for the normal and skew—normal distribution are indicated as a continuous line in this figure.
As in the first application, it is observed that for the T and ST distributions, u; is inversely proportional
to the Mahalanobis distance. This characteristic of these distributions allows controlling the influence
of a single observation on the parameter estimates.

Finally, we conduct a local influence study based on M(0) according to the Sections 3.2 and 3.3.
Here, we used the criterion M(0); > M(0) + 3.55M(0), [ = 1,...,753, to discriminate whether an
observation is influential. The Figure 11 displays the results for the N-CR, SN-CR, T-CR and ST-CR
models under the case-weight perturbation (left side) and scale perturbation (right side). From these
figures, it is noted that five observations (185, 349, 366, 394 and 408) are identified as influential under
the N-CR model. Note that the observations that were considered influential under the case weight
perturbation also were detected under the scale perturbation under N-CR. Besides, the influence of
those observations seems not to change under both cases. Others two observations (598 and 692)
are identified as influential in the case-weight perturbation and three (74, 349 and 394) in the scale
perturbation under the SN-CR model. Again, no observation was identified as influential under the
T-CR and ST-CR models in both perturbations, making it possible to conclude that for this data set
the student’s-t and skew-# models accommodates slightly better the influential observations.

After all the analyzes performed, the final fitted model selected from our analysis is given by

¥, ~ ST(ﬂ =0.382 - 0.136 Age; + 0.594 Education; — 2.266 Youngkids; + 0.193 Experience;,
6% =11.507,1=-1.178,9 = 2.1),

i=1,...,753. The age and youngkids covariates have a negative effect on estimating wife’s average
hourly wage while the education and experience have a positive effect. The coefficients of the ST-CR
model are interpreted in the similar manner to standard regression coefficients. The expected wife’s
average hourly wage (in 1975 dollars) changes according to the coefficient for each unit increased in
the corresponding covariate.

5. Conclusions

Diagnostic analysis is an efficient way to detect influential observations and is an important step in data
analysis following parameter estimation. Thus, we believe that this article is a necessary supplement
to the work by Lachos et al. (2022) by proposing influence diagnostic tools for detecting influential
observations in ST-CR models. The diagnostic analysis is based on local influence techniques pre-
sented in Zhu and Lee (2001) and Zhu et al. (2001), for which explicit expressions are obtained for
V under different perturbation schemes, and the Hessian matrix O(@ | 8). Further, we applied our
method to two real data sets (left and right-censored) to illustrate how the procedure developed can
be used to evaluate model assumptions, identify outliers and obtain robust parameter estimates. The
method proposed in this paper is implemented in R, and the code is available for download in the
folder Diagnostics from GitHub repository (https://github.com/hlachos/skewt-censored).
A short-term project includes the development of an efficient and reliable R package.

Finally, some extensions of the current work include the multivariate ST-CR model (Valeriano et
al., 2023) a likelihood-based treatment of ST regressions with informative censoring Lachos et al.
(2021) or the finite mixtures of ST-CR models (Zeller et al., 2019). An in-depth investigation of
such extensions is beyond the scope of the present paper, but certainly an interesting topic for future
research.
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Appendix A: Hessian matrix

The Hessian matrix O(8 | 6) is obtained from the second-order partial derivatives of Q(6 | 0), given in
(2.5), evaluated at 0= (ﬁT, &2, ;I)T, which has elements given by
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