• Title/Summary/Keyword: heavy alloy

Search Result 166, Processing Time 0.023 seconds

Tungsten-Titanium Powder Compaction by Impulsive Loading (I) (W-Ti 분말 압축 (I))

  • Dal Sun Kim;S.Nemat-Nasser
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2001
  • Depleted uranium (DU) outperforms tungsten heavy alloys (WHA) by about 10%. Because of environmental and hence, political concerns, there is a need to improve WHA performance, in order to replace the DU penetrators. A technique of metal powder compaction by the detonation of an explosive has been applied to tungsten-titanium(W-Ti) powder materials that otherwise may be difficult to fabricate conventionally or have dissimilar, nonequilibrium, or unique me1astab1e substructures. However, the engineering properties of compacted materials are not widely reported and are little known especially for the "unique" composition of W-Ti alloy. To develop high-performance tungsten composites with superior ballistic attributes, it is necessary to understand, carefully document controlled experimental results, and develop basic computational models for potential composites with controlled microstructures. A detailed understanding and engineering application of W-Ti alloy can lead to the development of new structural design for engineering components and materials.

  • PDF

A Study on the Surface Roughness Characteristics by using SNCM616 Alloy Still (SNCM616 합금강을 이용한 표면조도 특성에 관한 연구)

  • Choi, Chul-Woong;Kim, Yong-Kyoung;Kim, Jin-Su;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.607-613
    • /
    • 2019
  • In this study, we investigate the effect of SNCM616 alloy steel, which is commonly used in industry, such as rotors and crank-shafts, on the surface roughness of CNC HBM with Ø25 mm, 8-blade reamer to objective is to analyze and present optimal cutting conditions. The higher the feedrate for the spindle speed, the rougher the surface roughness. The surface roughness was found to be better when the feed rate was lower. The resultant value of the most accurate surface roughness is Ra 0.756 ㎛, and the optimal cutting conditions are 25 rpm at spindle speed and 20 mm/min at transfer speed.

NEW PROGRESS IN TiN-BASED PROTECTIVE COATINGS DEPOSITED BY ARC ION PLATING

  • Huang, R.F.;Wen, L.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.265-275
    • /
    • 1999
  • Titanium nitride and related overlayers produced by arc ion plating (AIP) are applied as commercial coatings in world-wide scale since the middle of 80s. Due to the achievements of low temperature deposition (LTD), they begin now to be used as wear and corrosion-resistant coatings for machine parts, besides applications on cemented carbide and high speed steel cutting tools. On the other side, TiN can be now applied successfully to brass, Al-alloy, ZnAl alloy articles as decorative coating through LTD. Various nitrides, carbonitrides, borides and other refractory compounds, such as (Ti, Al)N, TiCN, CrN, are used as the coatings for special heavy-duty working conditions instead of TiN since 90s. More and more multilayer coatings are applied now substituting single layer ones. Duplex processes are under development.

  • PDF

Fatigue crack growth behaviors of SA508 Gr.3 Cl.2 base and weld material in 290℃ water environment (SA508 Gr.3 Cl.2 저합금강과 용접부의 290℃ 수화학 환경에서 피로균열거동 분석)

  • Cho, Pyungyeon;Kim, Jeong Hyeon;Jang, Changheui;Cho, Hyunchul
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • The fatigue crack growth behaviors of SA508 Gr.3 Cl.2 low alloy steel in high temperature water environment were investigated. Overall, weld metal showed similar crack growth rate as that of base metal. At 0.01 Hz, fatigue crack growth rate (FCGR) was higher than that in air while the difference was smaller at 0.1 Hz. Also, FCGR showed ${\Delta}K$ dependency at 0.1 Hz only, indicating that the environmental effect was much greater at slower loading frequency of 0.01 Hz. FCGR of SA508 Gr.3 Cl.2 low alloy steel was compatible to or smaller than the ASME Sec. XI fatigue reference curves in high temperature water environment.

A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method (방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성)

  • Lee, Han-Chan;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.

Evaluation and Development of Corrosion Resistant Materials for Smokestacks

  • Ebara, Ryuichiro
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.211-218
    • /
    • 2007
  • In this paper, evaluation and development of corrosion resistant materials for smokestacks is summarized mainly on the basis of the author's experimental results. Operating environments of smokestacks and the problems of conventional lining materials for smokestacks are described briefly. The emphasis is focused upon the evaluation and development of recently developed corrosion resistant steels such as YUS260 for heavy oil fired smokestacks, WELACC5 for LNG fired smokestacks and NSL310MoCu Clad steel for coal fired smokestacks. Corrosion resistance of these steels under laboratory corrosion testing environments and actual environments are evaluated. Finally future problems of corrosion resistant materials for smokestacks are touched on briefly.

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Fish Farm Performance of Copper-alloy Net Cage: Biological Safety of Red Sea Bream Pagrus major Rearing the Copper-alloy Net Cage (동합금가두리망에서 사육한 참돔, Pagrus major의 생물학적 안전성)

  • Shin, Yun Kyung;Kim, Won-Jin;Jun, Je-Cheon;Cha, Bong-Jin;Kim, Myoung-Sug;Park, Jung Jun
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • To understand the application in farm for the fish aquaculture, we investigated biological and pathological traits on red sea bream Pagrus major which were reared in each copper-alloy net cage and the synthetic fiber net cage for 9 months. Two groups of cage were made and set in Yokji-eup, Tongyoung, Gyeongsangnam-do in size of 25 m in diameter and 10 m of depth. Survival rate of the red sea bream in the rearing copper-alloy net cage and synthetic fiber cage showed 99.75% and 99.70% respectively, there was no significant difference. Daily weight growth rate in each net was shown to 2.13 g/day and 1.65 g/day. Health analysis by blood composition analysis showed a favorable result in the copper-alloy net cage rather than in the synthetic fiber net. Bioaccumulation of heavy metal such as Cu and Zn especially in gonad was higher than other organ. Bioaccumulation of Cu and Zn in the muscle was lower compared to the permitted standard for food safety. Pathogenic infection test discovered Microcotyle tai for parasite, V. alginolyticus and other five species for bacteria. But there was a little bit difference of bacteria infection in copper-alloy net cage and copper-alloy net cage is expected to be has antibacterial effect. Thus, copper-alloy net cage can be applied to farm considering its system stability, recycling, antibiosis and food safety.

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

Synthesis of Tungsten Heavy alloy Nanocomposite Powder by Ultrasonic-milling Process (초음파 밀링 공정을 이용한 텅스텐 중합금 나노복합분말의 제조)

  • Lee, Seung-Chul;Lee, Chang-Woo;Jung, Sung-Soo;Cha, Berm-Ha;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.101-107
    • /
    • 2007
  • Ultrasonic-milling of metal oxide nanopowders for the preparation of tungsten heavy alloys was investigated. Milling time was selected as a major process variable. XRD results of metal oxide nanopowders ultrasonic-milled for 50 h and 100 h showed that agglomerate size reduced with increasing milling time and there was no evidence of contamination or change of composition by impurities. It was found that nanocomposite powders reduced at $800^{\circ}C$ in a hydrogen atmosphere showed a chemical composition of 93.1W-4.9Ni-2.0Fe from EDS analysis. Hardness of sintered part using 50 h and 100 h powder samples was 399 Hv and 463 Hv, respectively, which is higher than the that of commercial products (330-340 Hv).