• 제목/요약/키워드: heating temperature and time

검색결과 1,375건 처리시간 0.03초

연신후 승온열처리한 PP filament의 역학적 성질에 관한 연구 (A Study On the Mechanical Properties of Isothermally Annealed after Elevated heating of drawn PP filaments)

  • 이은우
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.361-366
    • /
    • 2002
  • The change of mechanical properties of drawn PP filaments which was treated by isothermally annealed after elevated heating. Measurements were carried out with UTM for mechanical properties. Isothermally heat treatment were carried out $100^{\circ}C$, $120^{\circ}C$, $140^{\circ}C$ for 10min., 30min., 60min, in silicon oil bath. And isothermally heat treatment after elevated heating from $20^{\circ}C$ were carried out $100^{\circ}C$, $120^{\circ}C$, $140^{\circ}C$ for 10min., 30min., 60min., with heating rate of $1^{\circ}C/min$., $5^{\circ}C/min$., $10^{\circ}C/min$. From the results of this study, it found the following facts. Initial modulus and tensile strength were increased with increasing of annealed temperature and time. Also initial modulus of tensile strength of samples which were isothermally annealed after elevated heating from $20^{\circ}C$ were higher than those of isothermally annealed samples.

  • PDF

황산첨가 셀룰로오스의 탄화에서 승온속도의 영향 (The influence of heating rate on the carbonization of sulfuric acid-impregnated cellulose)

  • 김대영
    • 임산에너지
    • /
    • 제22권1호
    • /
    • pp.37-43
    • /
    • 2003
  • 천연셀룰로오스의 탄화과정에서 탄화수율에 영향을 미치는 인자는 탄화온도, 승온속도 및 탄화로 내의 분위기를 들 수 있다. 일반적으로 탄화수율을 높이기 위해서는 탄화목표온도를 낮추고, 승온속도를 느리게 하면 탄화로의 분위기를 불활성가스의 조건에서 탄화수율이 높아진다고 보고되어 있다. 본 연구에서는 탄화조건 중에서 가장 유동성을 가지고 있는 승온속도를 조절하고, 탈수촉매제로서 황산을 첨가함으로서 탄화수율의 향상과 탄화과정에서 천연셀룰로오스를 재료로 하여 탄화특성에 대하여 조사하였다. 그 결과 황산무처리시료에 대하여는 승온속도가 증가함에 따라 수율이 상당히 감소하였지만 황산처리 시료는 승온속도가 증가하여도 수율 감소 폭이 크지 않았다. 본 연구의 결과에서 탄화과정에 있어서 승온속도의 조절과 적당한 탈수제의 첨가는 탄화재료의 수율 향상과 탄화시간 단축에 유용한 기초자료가 될 것으로 생각된다.

  • PDF

Phase Transformation of Sn-Pb-Bi Solder for Photovoltaic Ribbon: A Real-time Synchrotron X-ray Scattering Study

  • Cho, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.155-158
    • /
    • 2014
  • The phase transformation of Sn-Pb-Bi solder for photovoltaic ribbon during soldering was studied using real-time synchrotron x-ray scattering. At room temperature, Sn and Pb crystal phases in the solder existed separately. By heating to $92^{\circ}C$, a new PbBi alloy crystal phase was formed, which grew further up to $160^{\circ}C$. The Sn crystal phase first started to melt at $160^{\circ}C$, and was mostly melted at $165^{\circ}C$. In contrast, the Pb and PbBi crystal phases started to melt at $165^{\circ}C$, and were mostly melted at $170^{\circ}C$. The useful result was obtained, that the solder's melting temperature decreased from $183^{\circ}C$ to $170^{\circ}C$ by addition of a small amount of Bi atoms to the eutectic Sn62-Pb38 (wt%) solder. Our study first revealed the detailed in-situ phase transformation of Sn-Pb-Bi solder during heating to the eutectic temperature. Considering the results of peel strength and hardness, adding 1 wt% of Bi atoms to the Sn62-Pb38 (wt%) solder produced an appropriate composition.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel)

  • 김제돈;김경식
    • 열처리공학회지
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

지중온도회복을 고려한 지열 히트펌프 시스템의 운전방법 검토 (Study on the Operation Method of Ground Source Heat Pump System Considering Recovery of Ground Temperature)

  • 배상무;전재영;권영식;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.24-30
    • /
    • 2020
  • Ground source heat pump (GSHP) systems are actively introduced as cooling and heating conditioning systems of buildings due to annual stable performance and easily maintenance. However, ground temperature imbalance is occurred when the GSHP is used for a long period. Therefore, in this study, we proposed the operation method of the system that considered the recovery time of heat source temperature. The entering water temperature (EWT) and heat exchange rate (HER) were comparatively analyzed according to the continuous and intermittent operation. Furthermore, the underground thermal environment was evaluated by numerical analysis model. As the result, the intermittent operation was a maximum of 12.3% higher HER during the heating period than the continuous operation. In addition, the overall ground heat source temperature at the intermittent operation was higher than it at the continuous operation.

고온에 노출된 링형 강관 구속 콘크리트의 폭렬 및 초음파투과시간 (Spalling and Ultrasonic Pulse Transmission Time of Ring-Type Restrained Concrete exposed to High Temperature)

  • 황의철;김규용;이상규;손민재;편수정;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.174-175
    • /
    • 2019
  • In this study, the spalling and ultrasonic pulse transmission time of concrete were investigated according to compressive strength during heating. As a result, the higher the compressive strength of the concrete, the more the explosion occurs, which affects the cross-sectional loss and the spalling fragment size. Also, ultrasonic pulse transmission time was found to be strongly influenced by the section loss of concrete.

  • PDF

태양열이용 하이브리드 난방 열펌프시스템 (The hybrid heat pump with solar energy for heating)

  • 김지영;고광수;강병찬;박윤철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

동계 대학강의실 환경성능수준 측정에 관한 연구 (A Study on the Environmental Performance Level Measurement in the Lecture Room during Winter Time)

  • 안태경
    • 교육시설 논문지
    • /
    • 제25권2호
    • /
    • pp.3-9
    • /
    • 2018
  • This study is designed to measure the indoor environment and research on the environmental situation in the lecture room where the lecture is conducted during the winter time in order to understand the level of environment in the lecture room and then suggest the method of improving the environment in the lecture room in the future. The findings are as follows. First, the number of ventilation measured at Lecture Room 1 was 1.2 times/hour while that at Lecture Room 2 was 2.2 times/hour. Second, the lighting at Lecture Room 1 and 2 was 650~700 lux while the noise at Lecture Room 1 and 2 was not more than 60dB. Third, Group 1 and Group 2 felt in the same way that the air quality in the lecture room was not good when the air quality was measured in 30 minutes after the start of lecture. Fourth, both Group 1 and Group 2 showed the lowered concentration on the class in 30 minutes after the start of the class when the room was heated. But Group 1 got less drop in the concentration when they was put in the non-heated room. Fifth, As for the change in the carbon dioxide volume during lecture, the carbon dioxide volume in the room where the windows was closed rose 1,000~1,400ppm from that at the time of start, thus showing that the indoor air quality got worsened. In addition, it is hard to control the indoor temperature due to the heating and non-heating. Accordingly, it is necessary to get the heating system which can make the ventilation in order to keep the environmental level in the lecture room to a certain level and keep the proper indoor temperature.

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF