• Title/Summary/Keyword: heating temperature

Search Result 5,228, Processing Time 0.038 seconds

A Fundamental Study for the Efficient Heating System for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 효율적인 가열공정을 위한 기초연구)

  • Kim, Dae-Hun;Kwon, Soo-Ahn;Lee, Jae-Jun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • PURPOSES: The objective of this study is to determine the milling temperature that minimizes the binder-induced damage to the aggregate; this is achieved by evaluating the temperature dependence of the viscosity of the asphalt binder, with the aim of developing an effective heating process for warm in-place recycling. METHODS : The validity of the indoor test was confirmed by conducting an internal heating test based on the on-site heating test. In addition, the adhesive power of the binder was measured at various temperatures ($30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$) via three types of measuring methods. RESULTS: The surface temperature spectrum of field test was slight different with that of laboratory test. But, the spectra of inner temperature between the field and the laboratory was almost similar. Also, the adhesion of the asphalt binder was measured from $30^{\circ}C$ to $70^{\circ}C$. The adhesion of the binder was significantly decreased from $60^{\circ}C$. Contrary to other temperature, the adhesion was slightly changed from $60^{\circ}C$ to $70^{\circ}C$. Also the inner temperature between two different heating methods was shown similar temperature spectra. CONCLUSIONS: The pavement heating temperature spectrum of hot in place recycling method was simulated by a laboratory test. Based on this study, the optimum temperature was $60^{\circ}C{\sim}70^{\circ}C$ for reducing aggregate damage during milling process. The susceptibility heating method developed in this study can be maintained the optimum inner temperature range.

A Study on Field Applicability of Underground Electric Heating Mesh (매설용 전기 발열 매시의 융설 효과에 대한 현장 적용성 연구)

  • Suh, Young-Chan;Seo, Byung-Seok;Song, Jung-Kon;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2013
  • PURPOSES : This study aims to investigate the snow-melt effects of an underground electric heater's snow-melt system via a field performance test, for evaluating the suitability of the system for use on a concrete pavement. The study also investigates the effectiveness of dynamic measures for clearing snow after snowfall events. METHODS : In order to check the field applicability, in November 2010, specimens were prepared from materials used for constructing concrete pavements, and underground electric heating meshes (HOT-mesh) were buried at depths of 50 mm and 100 mm at the site of the Incheon International Airport Construction Research Institute. Further, an automatic heating control system, including a motion sensor and pavement-temperature-controlled sensor, were installed at the site; the former sensor was intended for determining snow-melt effects of the heating control system for different snowfall intensities. Pavement snow-melt effects on snowy days from December 2010 to January 2011 were examined by managing the electric heating meshes and the heating control system. In addition, data on pavement temperature changes resulting from the use of the heating meshes and heating control system and on the dependence of the correlation between the outdoor air temperature and the time taken for the required temperature rise on the depth of the heating meshes were collected and analyzed. RESULTS : The effects of the heating control system's preheat temperature and the hot meshes buried at depths of 50 mm and 100 mm on the melting of snow for snowfalls of different intensities have been verified. From the study of the time taken for the specimen's surface temperature to increase from the preheat temperature ($0^{\circ}C$) to the reference temperature ($5{\sim}8^{\circ}C$) for different snowfall intensities, the correlation between the burial depth and outdoor air temperature has been determined to be as follows: Time=15.10+1.141Depth-6.465Temp CONCLUSIONS : The following measures are suggested. For the effective use of the electric heating mesh, it should be located under a slab it may be put to practical use by positioning it under a slab. From the management aspect, the heating control system should be adjusted according to weather conditions, that is, the snowfall intensity.

Finite Element Analysis of Heat Transfer Effects on Asphalt Pavement Heated by Pre-Heater Unit Used in Hot In-Place Recycling (유한요소해석을 통한 현장 가열 재활용 시공 장비의 가열판 용량에 따른 아스팔트 포장의 열전도성 평가)

  • Lee, Kang Hun;Lim, Jin Sun;Jeong, Kyu Dong;Im, Jeong Hyuk;Kwon, Soo Ahn;Kim, Yong Joo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • PURPOSES: The national highways and expressways in Korea constitute a total length of 17,951 km. Of this total length of pavement, the asphalt pavement has significantly deteriorated, having been in service for over 10 years. Currently, hot in-place recycling (HIR) is used as the rehabilitation method for the distressed asphalt pavement. The deteriorated pavement becomes over-heated, however, owing to uncontrolled heating capacity during the pre-heating process of HIR in the field. METHODS: In order to determine the appropriate heating method and capacity of the pre-heater at the HIR process, the heating temperature of asphalt pavement is numerically simulated with the finite element software ABAQUS. Furthermore, the heating transfer effects are simulated in order to determine the inner temperature as a function of the heating system (IR and wire). This temperature is ascertained at $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, and $800^{\circ}C$ from a slab asphalt specimen prepared in the laboratory. The inner temperature of this specimen is measured at the surface and five different depths (1 cm, 2 cm, 3 cm, 4 cm, and 5 cm) by using a data logger. RESULTS: The numerical simulation results of the asphalt pavement heating temperature indicate that this temperature is extremely sensitive to increases in the heating temperature. Moreover, after 10 min of heating, the pavement temperature is 36%~38% and 8%~10% of the target temperature at depths of 25 mm and 50 mm, respectively, from the surface. Therefore, in order to achieve the target temperature at a depth of 50 mm in the slab asphalt specimen, greater heating is required of the IR system compared to that of the gas. CONCLUSIONS : Numerical simulation, via the finite element method, can be readily used to analyze the appropriate heating method and theoretical basis of the HIR method. The IR system would provide the best heating method and capacity of HIR heating processes in the field.

Thermal Characteristics of Heating Films Including Conductive Graphite (전도성 흑연을 포함하는 발열 필름의 열적 특성)

  • Choi, Gyuyeon;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.500-504
    • /
    • 2020
  • Heating films were prepared with composites of poly (methyl methacrylate) and conductive graphite. The as-prepared composite was deposited on a PET film and then fabricated using a bar coater to produce a film with uniform thickness. Copper electrodes were attached to both ends of the as-prepared film, and the heating characteristics of the film were analyzed while applying a DC voltage. The electrical conductivity and heating temperature of the heating films depended on the size, structure, content, and the dispersion characteristics of the graphite in the composite. The thermal energy was adjusted by controlling the electrical energy, based on the Joule heating theory. The electrical resistance of the film was altered in proportion to Ohm's law, and the heating temperature was changed according to the structure of the film (interelectrode spacing or electrode length) and the conductive graphite content. When the content of conductive graphite in the film increases, the electrical resistance decreases, and the heating temperature increases; however, there is no significant change above a certain content (50%).

Study on the Heat Generation Characteristics of the Carbon Heating Source with High Temperature (고온 카본발열체의 발열특성에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Shin, J.H.;Jeong, H.M.;Chung, H.S.;Chun, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.106-111
    • /
    • 2001
  • This paper is a study on the heat generation characteristics of the carbon heating source with high temperature. The main variables of this study are the input current and the amount of carbon heating source. As the results of the experiment in the waste rate of carbon heating source. The case of carbon heating source 300g was large than 500g. As the input current and the temperature are increased, the resistance values of carbon heating source were large. The Joule heat was represented the large value as the amount of heating source decrease with the input current. Finally, the heating source was represented the electrical steady state as the input current is increase.

  • PDF

Spalling Properties of Ring-Type Restrained Concrete by Heating Conditions (가열조건에 따른 링형 구속 콘크리트의 폭렬특성)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Lee, Sang-Kyu;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • In this study, surface spalling and explosive spalling of ring-type ultra-high strength concrete under rapid heating and slow heating were investigated. In rapid heating, the internal temperature difference of the concrete is large, so that continuous surface spalling occurs. However, in slow heating, the difference in the internal temperature of the concrete is small, resulting in explosive spalling at a time. Since the heating condition has a great influence on the internal temperature of the concrete, it is necessary to consider the spalling of the concrete under various heating conditions.

  • PDF

A Study on Temperature Variation of Coil on BAF Annealing in HNx Atmospheric Gas (HNx 분위기가스중에서 BAF소둔시 코일의 온도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1227-1234
    • /
    • 1994
  • A cold spot temperature control system for the batch annealing furnace has been established in order to reduce energy consumption which is essential to improve productivity and stabilize the properties of products. A relationship between annealing cycle time and gas flow rate is developed and also for the variation of coil cold spot temperature with time during heating, and actual temperature measurements at mid-width of each coil during soaking. The results of the temperature variation effect on the cold rolled steel sheet batch annealing are as follows. (1) Cooling rate increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component change. (2) In case of short time heating, the slowest heating part is the center of B coil and in case of ling time heating, the low temperature point moves from the center of coil to inside coil. (3) The outside of top coil is the highest temperature point under heating, which becomes the lowest temperature point under cooling. (4) Soaking time determination depends on the input coil width, and soaking time for quality homogenization of 1214 mm width coil must be 2 hours longer than that of 914 mm width coil.

Evaluation of Blank Heating Processes by Thermal Stress Analysis (열응력 해석에 의한 블랭크 단조품 가열공정 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4375-4380
    • /
    • 2015
  • This study was performed to evaluate a newly proposed heating process of blank, which was used for Crank throw in the diesel engine, and provide design guidelines of heating processes. Non-linear numerical analyses were done using ANSYS program to investigate temperature and thermal stress distributions of blank during heating processes. The heating process consists of two stages; one is a heating stage with 20 hours, and the other is a holding stage with 12 hours, totaling 32-hour heating time. Based on analysis results, it was found that the temperature difference between the center and the surface of blank increased linearly during the heating stage but decreased gradually during the holding stage of heating processes, while max. equivalent stress, $12.5kg/mm^2$, was found at the center of blank after 10-hour heating time. As the guideline of blank heating process, it was recommended to keep the temperature difference between the center and the surface of blank to be within $150^{\circ}C$ when the environment temperature in furnace reaches $650^{\circ}C$ during a heating stage.

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

Numerical Analysis on Body Temperature Change with Heating Life Vest (발열구명동의 착용에 의한 인체의 체온변화에 관한 수치해석)

  • Kim, Myoung-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • The characteristics of temperature profile around human body with heating life vest at sea were investigated in this paper. Especially, the temperature profile of human body was numerically calculated by finite difference method with Mathcad. The main parameters were seasonal mean sea water temperature, heating amount and heating duration time of heating life vest. In this paper, the boundary layer was composed by the difference matters, and the thermal conductivity was calculated with an adjacent cells using thermal resistance method. It was clarified that the body temperature was kept highly and the risk of death from hypothermia was reduced by wearing heating life vest.

  • PDF