• Title/Summary/Keyword: heating fuel

Search Result 767, Processing Time 0.022 seconds

A Study on Environmental Standards of School Building (교사환경기준에 관한 연구)

  • Hong, Seok-Pyo;Park, Young-Soo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.1
    • /
    • pp.11-43
    • /
    • 2000
  • The purpose of this study was, through analyzing the previous researches, to grasp the present status of environment of school building(ESB), research the sundry records of each element and, through comparative analysis of the standard of ESB in Korea, the United States, and Japan, select the normative standard of ESB, to clarify the point at issue presented in Regulation of Construction & facility Management for Elementary and and Secondary School in Korea, and to suggest an alternative preliminary standard of ESB. To carry out a research for this purpose, these were required: 1. to investigate the existing present status of ESB, 2. to make a comparative analysis of the standard of ESB in each country, 3. to suggest the normative standard of preliminary standard of ESB, 4. to analyze the controversial points of the standard of ESB in Korea, 5. to suggest an alternative preliminary standard of ESB. The conclusions were as follows: 1. Putting, through analyzing the previous researches, the existing present status of ESB together, it seemed that lighting environment, indoor air environment and noise environment were all in poor conditions. 2. In the result of a comparative analysis of the standard of ESB in Korea, Japan and the United States, in Korea the factors of each lighting and indoor air environment were not presented properly, in Japan, in lighting environment aspect, the standard on natural lighting and the factors on brightness were not presented., and in the USA the essential factors of each environment were throughly presented. In the comparison of the standards on each factor, Korea showed that the standard level presented was less properly prescribed than those of the USA and Japan but it also showed that the standard levels prescribed in the USA and in Japan were mostly similar to the standard levels in records investigated. 3. With the result of the normative standard selection on School Builiding environment factor of prescribed in this study, the controversial points of the standard of ESB in Korea were analyzed and the result was utilized to suggest new preliminary standard of ESB. 4. As the result of the analysis of the controversial points of the standard of ESB in Korea, it was found that the standard of ESB in Korea should be established on a basis of School Health Act and be concretely presented in School Health Regulation and School Health Rule. The factors of each environment was improperly presented in the existing standard of ESB in Korea. Moreover the standard of them was inferior to that of the records investigated and those of in the USA and in Japan and it also showed that the standard of it in Korea was improper to maintain Comfortable Learning Environment. 5. A suggested preliminary standard of ESB acquired through above study as follows: 1) In this study a new kind of preliminary standard of ESB is divided into lighting environment, indoor air environment, noise environment, odor environment and for above classification, reasonable factor and standard should be established and the controling way on each standard and countermeasures against it should be considered. 2) In lighting environment, the factors of natural lighting are divided into daylight rate, brightness, glare. In the standard on each factor, daylight rate should secure 5% of a mean daylight rate and 2% of a minimum daylight rate, brightness ratio of maximum illumination to minimum illumination should be under 10:1, and in glare there should not be an occurrence factor from a reflector outside of the classroom. And the factors of unnatural lighting are illumination, brightness, and glare. In the standard on each factor, illumination should be 750 lux or more, brightness ratio should be under 3 to 1, and glare should not occur. And Optimal reflection rate(%) of Colors and Facilities of Classroom which influences lighting environment should be considered. 3) In indoor air environment factors, thermal factors are divided into (1) room temperature, (2) relative humidity, (3) room air movement, (4) radiation heat, and harmful gases (5) CO, (6) $CO_2$ that are proceeded from using the heating fuel such as oval briquettes, firewood, charcoal being used in most of the classroom, and finally (7) dust. In the standard on each factor, the next are necessary; room temperature: $16^{\circ}C{\sim}26^{\circ}C$(summer : $E.T18.9{\sim}23.8^{\circ}C$, winter: $E.T16.7{\sim}21.7^{\circ}C$), relative humidity: $30{\sim}80%$, room air movement: under 0.5m/sec, radiation heat: under $5^{\circ}C$ gap between dry-bulb temperature and wet-bulb temperature, below 1000 ppm of ca and below 10ppm of $CO_2$, dust: below 0.10 $mg/m^3$ of Volume of dust in indoor air, and ventilation standard($CO_2$) for purification of indoor air : once/6 min.(about 7 times/40 min.) in an airtight classroom. 4) In the standard on noise environment, noise level should be under 40 dB(A) and the noise measuring way and the countermeasures against it should be considered. 5) In the standard on odor environment, odor level under Physical Method should be under 2 degrees, and the inspecting way and the countermeasures against it should be considered.

  • PDF

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.

Development and Economic Effect of Integrated Optimum Operation System using Wide Area Energy (광역에너지이용 통합 최적화 운전 시스템 개발 및 경제적 효과)

  • Lee, Hoon;Kim, Lae-Hyun;Chang, Won-Seok
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.221-229
    • /
    • 2009
  • This study develops the optimized operation program which enables effective and economic operation between individual and connected branch offices by analyzing the current status and influential indicators of district heating companies' capital branch offices. Accordingly, the study examines the efficiency of optimized operation program. In doing so, this study has diagnosed and analyzed various factors, such as boilers, pumps, and relevant tags (temperature, pressure, fuel amount) through investigation of individual branch offices, and finally succeeded in developing wide-ranging data base by factor covering one-year time period. Additionally, after running the optimized operation program, different branch offices, optimum preference has turned out "incinerator receiving heat from KEPCO>CHP >PLBs>PLBw." Meantime, except the connected offices, there has been no big difference between actual and optimum operation program in branch offices. Meanwhile, the integrated optimum operation program has made it possible the most optimal result only via the connecting supply and demand heat without changing received Heat from KEPCO which is the same as total productive heat. The result has showed that the reduction percentage per day is 2.45~6.80%, and the reduction cost per day is 22,727~60,077 thousand won given the randomly selected sample days. In particular, winter time shows the highest demand with the largest reduction cost whereas summer time illustrates the lowest demand with the smallest reduction cost. Given this result, reduction cost per year compared to actual heat production cost for one year theoretically would be 84 hundred million won. Also, the economic effect showed that the reduction cost percentage per year is more than 2.74% on heat production cost per year for all capital branch offices.

Operation of dry distillation process on the production of radionuclide 131I at Puspiptek area Serpong Indonesia, 2021 to 2022

  • Chaidir Pratama;Daya Agung Sarwono;Ahid Nurmanjaya;Abidin Abidin;Triyatna Fani;Moch Subechi;Endang Sarmini;Enny Lestari;Yanto Yanto;Kukuh Eka Prasetya;Maskur Maskur;Fernanto Rindiyantono;Indra Saptiama;Anung Pujiyanto;Herlan Setiawan;Tita Puspitasari;Marlina Marlina;Hasnel Sofyan;Budi Setiawan;Miftakul Munir;Heny Suseno
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1526-1531
    • /
    • 2024
  • 131I is a fission product produced in a nuclear reactor by irradiating tellurium dioxide, with a half-life of 8.02 day. The most important and widely used method for making 131I is irradiation using a nuclear reactor and post-irradiation followed by dry distillation. The advantage of the dry distillation process is that the process and the equipment are relatively simple, namely TeO2 (m.p. 750 ℃), which can withstand heating during reactor irradiation. Based on TeO2 irradiation by neutron following the technique of dry distillation was explained for production of 131I on a large scale. A dry distillation followed the radioisotope production operation using the 30 MW GA Siwabessy nuclear reactor to meet national demand. TeO2 targets are 25 and 50 g irradiated for 87-100 h. The resulting 131I activity is 20.29339-368.50335GBq. According to the requirements imposed on the radionuclide purity of the preparation, the contribution of 131I training in the resulting preparation was not less than 99.9 %

Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula (한반도 권역별 대기 중 입자상 탄소 특성 연구)

  • Lee, Yeong-jae;Park, Mi-kyung;Jung, Sun-a;Kim, Sun-jung;Jo, Mi-ra;Song, In-ho;Lyu, Young-sook;Lim, Yong-jae;Kim, Jung-hoon;Jung, Hae-jin;Lee, Sang-uk;Choi, Won-Jun;Ahn, Joon-young;Lee, Min-hee;Kang, Hyun-jung;Park, Seung-myeong;Seo, Seok-jun;Jung, Dong-hee;Hyun, Joo-kyeong;Park, Jong-sung;Hwang, Tae-kyung;Hong, You-deog;Hong, Ji-hyung;Shin, Hye-jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.330-344
    • /
    • 2015
  • Semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon were made for the period of January to October 2014, at six national air monitoring stations in Korea. OC and EC concentrations showed a clear seasonal variation with the highest in winter (January) and the lowest in summer (August). In winter, the high carbonaceous concentrations were likely influenced by increased fuel combustion from residential heating. OC and EC concentrations varied by monitoring stations with 5.9 and $1.7{\mu}g/m^3$ in Joongbu area, 4.2 and $1.2{\mu}g/m^3$ in Honam area, 4.0 and $1.3{\mu}g/m^3$ in Yeongnam area, 3.7 and $1.6{\mu}g/m^3$ in Seoul Metropolitan area, 3.0 and $0.8{\mu}g/m^3$ in Jeju Island, 2.9 and $0.7{\mu}g/m^3$ in Baengnyeong Island respectively. The concentrations of OC and EC comprised 9.6~ 15.5% and 2.4~ 4.7% of $PM_{2.5}$. Urban Joongbu area located adjacent to the intersection of several main roads showed the highest carbon concentration among six national air monitoring station. On the other hand, background Baengnyeong Island showed the lowest carbon concentration and the highest OC/EC ratio (4.5). During the haze episode, OC and EC were enhanced with increase in $PM_{2.5}$ about 1.3~ 3 and 1.3~ 4.0 times respectively. The concentrations of OC, EC in the Asian dust case are about 1~ 2.4 times greater than in the nondust case. The origins of air mass pathways arriving at Seoul, using the backward trajectory analysis, can be mostly classified into 6 groups (Sector I Northern Korea including the sea of Okhotsk, Sector II Northern China including Mongolia, Sector III Southern China, Sector IV South Pacific area, Sector V Japan, Sector VI Southern Korea area). When an air mass originating from northern China and Mongolia, the OC concentrations were the most elevated, with a higher OC/EC ratio (2.4~ 3.3), and accounting for 17% of $PM_{2.5}$ mass on average.

Environmental Pollution in Korea and Its Control (우리나라의 환경오염 현황과 그 대책)

  • 윤명조
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.5-6
    • /
    • 1972
  • Noise and air pollution, which accompany the development of industry and the increase of population, contribute to the deterioration of urban environment. The air pollution level of Seoul has gradually increased and the city residents are suffering from a high pollution of noise. If no measures were taken against pollution, the amount of emission of pollutant into air would be 36.7 thousand tons per year per square kilometer in 1975, three times more than that of 1970, and it would be the same level as that of United States in 1968. The main sources of air pollution in Seoul are the exhaust has from vehicles and the combustion of bunker-C oil for heating purpose. Thus, it is urgent that an exhaust gas cleaner should be instaled to every car and the fuel substituted by less sulfur-contained-oil to prevent the pollution. Transportation noise (vehicular noise and train noise) is the main component of urban noise problem. The average noise level in downtown area is about 75㏈ with maximum of 85㏈ and the vehicular homing was checked 100㏈ up and down. Therefore, the reduction of the number of bus-stop the strict regulation of homing in downtown area and a better maintenance of car should be an effective measures against noise pollution in urban areas. Within the distance of 200 metres from railroad, the train noise exceeds the limit specified by the pollution control law in Korea. Especially, the level of noise and steam-whistle of train as measured by the ISO evaluation can adversely affect the community activities of residents. To prevent environmental destruction, many developed countries have taken more positive action against worsening pollution and such an action is now urgently required in this country.

  • PDF