Development and Economic Effect of Integrated Optimum Operation System using Wide Area Energy

광역에너지이용 통합 최적화 운전 시스템 개발 및 경제적 효과

  • Lee, Hoon (Graduate School of Energy & Environment, Seoul National University of Technology) ;
  • Kim, Lae-Hyun (Graduate School of Energy & Environment, Seoul National University of Technology) ;
  • Chang, Won-Seok (Graduate School of Energy & Environment, Seoul National University of Technology)
  • 이훈 (서울산업대학교 에너지환경대학원) ;
  • 김래현 (서울산업대학교 에너지환경대학원) ;
  • 장원석 (서울산업대학교 에너지환경대학원)
  • Received : 2009.10.05
  • Accepted : 2009.12.21
  • Published : 2009.12.31

Abstract

This study develops the optimized operation program which enables effective and economic operation between individual and connected branch offices by analyzing the current status and influential indicators of district heating companies' capital branch offices. Accordingly, the study examines the efficiency of optimized operation program. In doing so, this study has diagnosed and analyzed various factors, such as boilers, pumps, and relevant tags (temperature, pressure, fuel amount) through investigation of individual branch offices, and finally succeeded in developing wide-ranging data base by factor covering one-year time period. Additionally, after running the optimized operation program, different branch offices, optimum preference has turned out "incinerator receiving heat from KEPCO>CHP >PLBs>PLBw." Meantime, except the connected offices, there has been no big difference between actual and optimum operation program in branch offices. Meanwhile, the integrated optimum operation program has made it possible the most optimal result only via the connecting supply and demand heat without changing received Heat from KEPCO which is the same as total productive heat. The result has showed that the reduction percentage per day is 2.45~6.80%, and the reduction cost per day is 22,727~60,077 thousand won given the randomly selected sample days. In particular, winter time shows the highest demand with the largest reduction cost whereas summer time illustrates the lowest demand with the smallest reduction cost. Given this result, reduction cost per year compared to actual heat production cost for one year theoretically would be 84 hundred million won. Also, the economic effect showed that the reduction cost percentage per year is more than 2.74% on heat production cost per year for all capital branch offices.

본 연구에서는 지역난방 수도권 지사별 실태 및 영향인자 진단 분석을 통해 개별지사와 연계지사간의 효율적이며 경제적인 운전을 할 수 있는 최적화 운전 프로그램을 개발하고 이를 통해 실제보다 최적화 운전시 어느정도 경제적 효과가 있는지를 확인해 보고자 하였다. 이를 위해 각 지사별 실태조사를 통해 보일러, 펌프, 관련Tag(온도, 압력, 연료량)등 다양한 인자를 진단/분석하였고 최적화 프로그램 개발을 위해 방대한 1년간 데이터를 인자별 Data base를 구축할 수 있었다. 또한 이를 통해 지사별 최적화 프로그램을 개발하여 수행한 결과, 최적화 선호도는 "소각장 >한전수열 >CHP >PLBs >PLBw"이었으며 연계를 제외한 각 지사별 실제운전과 최적화 운전 비용차이가 거의 없었다. 한편, 통합운영 최적화 프로그램을 개발하여 실제와 동일한 총 생산열량과 동일한 한전수열량과 같은 고정인자는 변동치 않고 단지 연계공급/수급열량만을 프로그램을 통해 최적조건(가장 저렴하고 효율적인 열량을 우선공급하는 조건)으로 효율적으로 운전한 결과, 사계절별 임의로 선정된 2~4일에 대한 일일 절감율 2.45~6.80%, 일일 절감액 22,727천원~60,077천원을 나타내었는데, 특히 겨울철에 제일 많은 수요량을 나타내며 가장 많은 절감비용을 얻을 수 있었고 수요량이 적은 여름철이 절감비용이 가장 작았다. 이러한 결과를 토대로 1년간 실제 열량 생산비용 대비 연간 절감비용을 환산하면 이론적으로 84억원이며 이는 수도권 전지사의 연간 총 열생산 비용(3,070억원)의 2.74%이상을 절감하는 경제적 효과가 있음을 확인할 수 있었다.

Keywords

References

  1. Roberto Aringhieri, Federico Malucelli, "Optimal operations management and network planning of a district heating system with a combined heat and power plant", Annals of Operations Research, 120, 173-199 (2003) https://doi.org/10.1023/A:1023334615090
  2. Pilavakis, P. A. and Perrin, M. A., "Energy and Capital Savings in a Steam Distribution System", Hydrocarbon Process, 6(7), 89-93 (1983)
  3. Erik Dotzauer, "Simple model for prediction of loads in district-heating systems", Applied Energy, 78, 277-284 (2004)
  4. Jorgen Sjodin, Dag Henning, "Calculating the marginal costs of a district-heating utility", Applied Energy, 78, 1-18 (2004) https://doi.org/10.1016/S0306-2619(03)00120-X
  5. Lianzhong Li and M. Zaheeruddin, "A control strategy for energy optimal operation of a direct district heating system", Int. J. Energy Res., 28, 594-612 (2004)
  6. Alemayehu Gebremedhin and Bahram Moshfegh, "Modelling and optimization of district heating and industrial energy system - an approach to a locally deregulated heat market", Int. J. Energy Res., 28, 411-422 (2004) https://doi.org/10.1002/er.973
  7. Helge V. Larsen, Benny Bohm, "A comparison of aggregated models for simulation and operational optimisation of district heating networks", Energy Conversion and Management, 45, 1119-1139 (2004) https://doi.org/10.1016/j.enconman.2003.08.006
  8. Atli Benonysson, Benny Bohm and Hans F. Ravn, "Operational optimization in a district heating system", Enery Convers. Mgmt, 36(5), 297-314 (1995) https://doi.org/10.1016/0196-8904(95)98895-T
  9. M. Bojic, N. Trifunovic, S.I. Gustafsson, "Mixed 0 -1 sequential linear programming optimization of heat distribution in a district-heating system", Energy and Buildings, 32, 309-317 (2000) https://doi.org/10.1016/S0378-7788(00)00058-X
  10. Kemal Comakli, Bedri Yuksel, Omer Comakli, "Evaluation of energy and exergy losses in district heating network", Applied Thermal Engineering, 24, 1009-1017 (2004) https://doi.org/10.1016/j.applthermaleng.2003.11.014