• Title/Summary/Keyword: heating fuel

Search Result 765, Processing Time 0.029 seconds

A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine (메탄올 스파크 점화기관의 기화특성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

Remediation of Bunker Fuel Oil C Contaminated Soil with Microwave Radiation and Heating Elements (마이크로파 조사와 발열체를 이용한 벙커C유 오염토양의 복원)

  • Oh, Da-kyung;Lee, Tae-jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.458-464
    • /
    • 2015
  • Total petroleum hydrocarbon (TPH) removal and temperature variations in bunker fuel oil C contaminated soil were investigated by using microwave radiation in the presence of triiron oxide or activated carbon as a heating element. Temperature increments of $1.4{\sim}1.6^{\circ}C/Watt$ were observed, when 100~500 watt of microwave radiation was applied for the contaminated soil in the presence of triiron oxide or activated carbon. Temperature variation of the soil was more rapid in the presence of triiron oxide than activated carbon. 10% or 25% of heating element content was required to reach the temperature of thermal desorption for triiron oxide and activated carbon respectively. After radiation, 44.1% and 89.4% of initial TPH in soil was removed in the presence of triiron oxide and activated carbon respectively. It was observed that activated carbon was more reactive than triiron oxide for the removal of high molecular carbon of bunker fuel oil C.

An Experimental Study on Effect of Temperature and Oxygen fraction of Intake Air on Fuel Consumption in Radiant Tube Burner (Radiant Tube 버너에 있어서 흡기 온도 및 산소분물이 연료 소모에 미치는 영향)

  • Kim Hyun-woo;Lee Kyung-Hwan;Roh Dong-Soon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.73-81
    • /
    • 2005
  • An Experimental study was conducted to investigate the effective way for fuel consumption improvement in radiant tube burner heating system used in steel manufacturing process. To find effectiveness of increase of temperature and oxygen fraction of intake air on fuel consumption, the model radiant tube burner heating system with recuperator was designed to be able to adjust temperature and oxygen fraction of intake air, and was operated under various conditions with oxygen concentration in exhaust gas changed. The results show that burner chamber temperature was increased about $10\%$ of intake air temperature increase. so it was difficult to expect fuel consumption improvement. But only 1 or $2\%$ increase of oxygen fraction in intake air made a significant improvement in fuel consumption even though it made much NOx emissions also. Therefore, if NOx emissions is controlled under regulation with burner modification, it is expected that increase of oxygen fraction in Intake air is effective way to improve fuel consumption.

Thermal and Physicochemical Characteristics of Solid Fuel Extruded with Cattle Feedlot Manure (우분 성형 고형연료의 열 및 물리화학적 특성)

  • Lee, Gwi-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Cattle feedlot manure could be used effectively as the solid fuel for heating of agricultural facilities. Therefore, this study was carried out to investigate the thermal and physicochemical characteristics of solid fuel extruded with cattle feedlot manure. Calorific values of the solid fuel extruded with cattle feedlot manure, which was dried to the moisture contents of 0.0% (w.b) and 35.0% (w.b,) were 14,906 kJ/kg and 11,797 kJ/kg, respectively. Calorific value of extruded solid fuel was linearly decreased with the increase of moisture content. The first, second, and third reaction point during thermal pyrolysis of solid fuels extruded with cattle feedlot manure was investigated as $108.1^{\circ}C$, $312.2^{\circ}C$, and $459.4^{\circ}C$, respectively. The maximum reaction point was presented at the temperature of $312.2^{\circ}C$. Weight loss of extruded cattle feedlot manure during thermal pyrolysis until $600^{\circ}C$ was reached to about 60%. Volume decrease of initial extruded cattle feedlot manure was 61% during drying for the use as solid fuel. Maximum strength of extruded cattle feedlot manure, which was dried as the moisture content of 10% (w.b.) was 41,9150 N/$m^2$. Ignition gas analysis of extruded cattle feedlot manure presented that it has small amount of $NO_x$ and $SO_x$. It was shown that dried cattle feedlot manure had main components of C and O including small amount of Mg, Si, and Ca.

The physicochemical characteristics of manufactured RPF by industrial combustibility waste (사업장 가연성폐기물로 제조된 RPF의 물리화학적 특성)

  • Ryu, Young-Bok;Kim, Yang-Do;Kang, Min-Su;Lee, Gang-Woo;Shon, Byung-Hyun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.234-241
    • /
    • 2010
  • Industrial combustible waste is very valuable source for refuse derived solid fuel since its heating value is usually over 3,000kcal/kg. Especially, synthetic high molecular compound which is high of productivity and heating value is used as raw material in many cases. Film type plastic has been widely used for producing RPF because their shaping is easy and they has high heating value. On the other hand, the possibility of various type of waste as a source for RPF in this study. It has been found that resin compound drived and tire derived solid fuel showed more than 6,000kcal/kg of heating value. But the heating value decreased by adding paper and wood waste.

Thermal Characteristics of Pellets made of Agricultural and Forest by-products (농림부산물을 이용한 펠릿의 열적 특성)

  • Kang, Y.K.;Kang, G.C.;Kim, J.K.;Kim, Y.H.;Jang, J.K.;Ryu, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of agricultural and forest by-products as fuel of heating system in agriculture, agricultural and forest biomass resources were surveyed, the pelletizer with capacity of $50\;kg{\cdot}h^{-1}$ was designed and manufactured and pellets were made by the pelletizer. High heating value, ash content, etc. of pellets made of agricultural and forest by-products were estimated. Straw of rice was the largest agricultural biomass in 2009 and the total amount of rice straw converted into energy of $299{\times}10^3$ TOE. And in 2009, amount of forest by-product converted into energy of $9,579{\times}10^3$ TOE. High heating values of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, $15,044\;kJ{\cdot}kg^{-1}$ respectively. High heating values of pellets made of agricultural by-products were average 83.6% compared to that of wood pellet. Average bulk density of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk was $1,400\;kg{\cdot}m^{-3}$ ($1.4\;g{\cdot}cm^{-3}$). Ash contents of the pellets were 6.6, 7, 6.2, 5.5, 33% respectively. Rice husk pellet produced the largest ash content compared to other kinds of pellets.

Derivation of Optimal Design Variables Considering Carbon Monoxide Emission Characteristics of Commercial Gas Stove Burners (업소용 가스레인지 버너의 일산화탄소 배출 특성을 고려한 최적 설계변수 도출)

  • Il Kon Kim;Taehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Commercial gas stoves feed primary air to the burner and burn the fuel-air mixture in a partially premixed combustion. This mechanism produces carbon monoxide during combustion. In this study, design parameters of a commercial gas stove were optimized by considering the carbon monoxide emission. Gas consumption rate, carbon monoxide emission, and water boiling temperature as a heating performance were determined. Carbon monoxide emission was measured using a Korean Industrial Standards standard collector. Water boiling temperature was measured by first soaking the pot in water for approximately 10 min and then heating the pot filled with water. A thermocouple was installed inside the pot. Carbon monoxide increased as the nozzle diameter was increased and the burner-pot height was decreased. This result was due to the insufficient mixing between the fuel and air. Heating performance was enhanced when the nozzle diameter was increased and the burner-pot height was decreased. However, the heating performance deteriorated when the nozzle diameter was 1.8 mm and the burner-pot height was reduced to 50 mm. This phenomenon was due to the formation of a flame on the side of the pot. A merit factor was defined to find the optimal design parameters to satisfy gas consumption rate, carbon monoxide emission, and heating performance. Optimal design values were established to be a nozzle diameter of 1.5 mm and a burner-pot height of 60 mm.

Why Fuel Cell ? - Its Vision and Prospects (연료전지 - 그 비전과 전망)

  • Kim, Gun-Tag;Chung, Jin-Yop
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.367-372
    • /
    • 2001
  • A fuel cell is an electrochemical energy conversion device tint converts hydrogen and oxygen into electricity and heat for hot water and heating room A fuel cell provides a DC voltage tint can be used to power motors, lights or any number if electrical appliances. There are several different types if fuel cells, each using a different chemistry. Some types if fuel cells show promise for use in DC (distributed generation) because fuel cell is very clean and efficient energy device. CETI (Clean Energy Technologies, Inc.) is developing PEMFC and DMFC for residential power generation, portable and battery. It is anticipated tint RPG is advantageous over current power generation by utility In terms if economics assuming the lifetime of major components is at least five years.

  • PDF

A Study on the Fuel Characteristics and Engine Performance of Indolene - Methanol Alternative Fuel (인돌렌-메탄올 대체연료의 연료 특성과 엔진성능에 관한 연구)

  • Lee, Min-Ho;Oh, Yool-Kwon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • A study of the propeny and performance effect of Indolene - Methanol Plus High Alcolhols (MPHA) has been completed. This study invested the measurement of fuel properties and performance parameters. The fuel properties investigated are distillation characteristics, heating valuer flash point, specific gravity and water tolerance. The performance parameters measured are minimum advance for best torque (MBT) spark timing, power output. The alcohol concentration was varied from 0 to 100 percent by volume in clear Indolene. The measurement of fuel properties indicated that, in general, Indolene - MPHA blends have higher water tolerance, similar specific gravity, similar flash point and different distillation characteristics compared to Indolene - Methanol blends. The performance parameters were measured using a single cylinder spark ignition engine at different compression ratios. The results of the performance measurements indicated that Indolene - MPHA blends have a higher MBT spark advance, similar power output.

  • PDF