• Title/Summary/Keyword: heating energy

Search Result 3,224, Processing Time 0.026 seconds

Active Solar Heating System Design and Analysis for the Zero Energy Solar House (제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석)

  • Baek, N.C.;Yoo, C.K.;Yoon, E.S.;Yoo, J.Y.;Yoon, J.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

A Measurement and an Analysis of Heating and DHW Energy Consumption in Apartment Buildings with individual Heating Systems (개별난방 공동주택의 난방 및 급탕 에너지사용량 계측 및 특성 분석)

  • Lee, Soo-Jin;Jin, Hye-Sun;Kim, Sung-Im;Lim, Su-hyun;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.15-22
    • /
    • 2018
  • The purpose of this study was to suggest specific evaluation data for heating and DHW energy consumption characteristics through analyzing energy consumption measurement data of gas boiler in Apartment Buildings with individual heating systems. To do this, it was measured both gas flow and electricity for heating and DHW respectively, and then it was analyzed not only characteristics according to energy sources; gas and electricity, but also the effect of various factors on heating and DHW energy consumption. The result of this study were as follows. It was developed the electric energy estimation model of a gas boiler through analysis on patterns by energy sources. And the effective factors for heating and DHW energy consumption were demonstrated as follows: the area for exclusive use, the number of auxiliary heating equipments, the number of occupants, and the number of sanitary fixtures.

The Energy Analysis and Control Characteristics of a Hot Water Heating System for Apartment Houses (공동주택용 온수난방 시스템의 에너지해석 및 제어특성)

  • 장효환;안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-87
    • /
    • 1996
  • Energy analysis for the hot water heating control system of apartment house complex is accomplished by computer simulation. Mathematical model of a boiler, pipe network and a unit-house is developed. The effects of heating control methods on the heating performance and energy consumption of the system are investigated. The heating control methods considered in this study are a continuous heating control, and on-off heating control and an intermittent heating control methods. For each control method, the effects of an outdoor temperature, indoor temperature sensing position and the capacities of the boilers and circulating pumps on the heating performance and energy consumption are obtained and "the best" control method is recommended.commended.

  • PDF

The Analysis of the Heating Energy in Apartment Houses with Pilotis (공동주택에서 필로티 세대의 난방에너지 분석)

  • Ahn, Min-Hee;Choi, Chang-Ho;Lee, Hyeon-Woo;Cho, Min-Kwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.99-104
    • /
    • 2006
  • This paper presents an analysis of heating energy for apartment houses in apartment building, paying special attention on the effect of pilotis which is increasing recently. A four-zone model composed of one conditioned and three unconditioned space is developed in this study. IES VE is adopted to estimate heating energy. Especially, we used Apache module for a heating energy calculated. The predicted result shows fairly good agreements with the available measured data and simulation data. Heating energy needed for an apartment located on the pilotis floors is far greater compared with the case of intermediate floors. Insulation thickness of walls, floors and underground structure appears to be a dominant factor affecting heating energy, which leads to needs of revision of the related regulation. It is finally concluded that the location dependent, severe imbalance in heating energy should be improved and reflected in the policy making process and the design standards.

Thermal Energy Characteristics for Greenhouse Heating System with Far-Infrared Heater (원적외선 면상발열체에 의한 온실 난방시스템의 열특성 분석)

  • Ro, J.G.;Kim, H.J.;Li, H.;Han, C.S.;Cho, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.529-534
    • /
    • 2006
  • The greenhouse heating system with far-infrared heater was built to analyze various thermal characteristics, such as greenhouse air temperature, soil temperature, energy flow, energy consumption in far-infrared heater, and other factors, which could be used in comparison with other greenhouse heating system in this study. The results showed that the inside air temperature of the far-infrared greenhouse heating system was $5^{\circ}C$ higher than that of hot air heating system. Heat loss of daytime was found to be larger than that of night time as much as 44.8% for the heating system with far-infrared heater. In the heating system with far-Infrared heater, when the lowest ambient temperature was -8 $\sim$ -7$^{\circ}C$, the air temperature of greenhouse was 12 $\sim$ 15$^{\circ}C$, thus the far-infrared heating system was shown to be feasible for heating system. Energy consumption of far-infrared heating system was shown to be less than that of hot air heating system.

An Investigation on the Effect of Duration of Sunshine on the Heating Energy of Apartment Houses (일조시간이 아파트 난방에너지 소비량에 미치는 영향에 관한 조사연구)

  • Lee Jong-Won;Hwang Hye-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • The purpose of this study is to analyze the effect of sunshine on the heating energy consumption of apartment houses by a field investigation in Haeundae, Busan. In the field, heating energy consumption of every household is researched by reading a calorimeter and the duration of sunshine of every household is calculated by Sunlight V1.0. Then, the duration of sunshine and heating energy are done regression analysis by SPSS 10. According to this study the apartment houses by orientation spend more energies order of east, west, southeast, southwest, and south. When apartment houses are same orientation, there is difference of $29{\sim}58\%$ in heating energy consumption by the duration of sunshine. And the heating energy consumption in worst condition of sunshine increases $67\%$ on the best condition of sunshine.

An investigation on the heating energy consumption and operating condition in apartment houses (공동주택의 에너지소비량 및 난방운전 실태에 관한 조사연구)

  • 신용태
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 1994.05a
    • /
    • pp.45-50
    • /
    • 1994
  • The energy consumption in apartment houses is investigated according to the heating systems, that is, district, central, and individual heating systems. And, operating conditions of intermittent heating are surveryed and analysed in the central heating systems. As a result, each annual energy consumption of district, central and individual heating system is 143.56 Mcal/m2year, 216.78 Mcal/m2year and 150.68 Mcal/m2year, Also, the heating is generlly started at 04:00 and 17:00 of each day, and the heating system is operated for 2~3 hours per each time.

  • PDF

A Comparative Study on Heating Energy Consumption of Multi-Family Apartment using EnergyPlus and eQUEST (EnergyPlus와 eQUEST를 이용한 공동주택의 난방에너지소비량 비교분석에 관한 연구)

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-So
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.48-56
    • /
    • 2013
  • Energy consumption analysis of multi-family apartment is an important area of research for the design of energy-saving housing. In this study, we selected a universal type of Flat-type apartments and analyzed the heating energy consumption of variables such as U-value, G-value, infiltration rate, heating setpoint and boiler efficiency with EnergyPlus and eQUEST. With these results, we identify the characteristics of EnergyPlus and eQUEST and provided base data for the design of energy-saving housing. The results indicate that infiltration rate is the most important factors to consider. And eQUEST heating energy consumption is approximately 10% higher compared to the EnergyPlus under same condition.

An Experimental Study on Daily Efficiency of Solar Collector with Heating Loads of Solar Water Heating System (부하를 고려한 태양열온수시스템의 일간 집열효율에 대한 실험적 분석)

  • Lee, Kyoung-Ho;Joo, Hong-Jin;Yoon, Eung-Sang;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • This paper describes an experimental study on efficiency of solar collector in solar water heating system connected to hourly water heating load. In general, the functional form of solar efficiency is expressed as a function of fluid temperature entering solar collector, ambient temperature, and solar irradiance. When energy saving from solar heating of water heating system is analyzed on along-term basis such as one year with given solar irradiance data, simplified analysis is more convenient han detailed system simulation for quick assessment. However, the functional form of the efficiency is not convenient for approximately simplified energy analysis because the inlet temperature can be obtained through a detailed system simulation. In the study, solar collector efficiency is obtained with various daily water heating load sand daily solar irradiance using experimental tests. The study also considers large residential buildings such as apartment buildings for application of solar water heating systems. From test results, it is found that daily solar collector efficiency is proportional to daily water heating loads and daily solar irradiance. The data obtained from the study can be utilized to find a functional relation between daily solar irradiance and daily heating load in stead of collector inlet temperature for application of solar collector efficiency to long-term approximated energy analysis of solar heating system.

Experimental Study on a Low-Temperature Hot Water Capillary Radiant Floor Heating System (저온온수 모세유관 바닥복사 난방시스템의 성능에 관한 실험적 연구)

  • Cho, Jinkyun;Park, Beungyong;Lee, Yongjun;Chong, Wonho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-82
    • /
    • 2018
  • Radiant floor heating systems with capillary tubes are energy saving systems in which hot water is circulated into capillary tube with a small diameter. In this study, the heating performance of capillary tube system is investigated in an experimental study and a simulation model. The results of the study showed that, the capillary tube radiant floor heating system maintains a more stable floor surface temperature in comparison a PB pipe system. In terms of energy consumption, the capillary tube radiant floor heating system proved to be more efficient than the PB pipe heating system at $40^{\circ}C$ of low temperature hot water supply. The difference between water temperature and room temperature can be held low for heating which saves energy. Low temperature radiant floor heating system with capillary tubes have significant advantages such as health improvement, low energy cost, optimum use of heat source(boiler) and higher operational efficiency.