• Title/Summary/Keyword: heating element

Search Result 535, Processing Time 0.026 seconds

Simulation of Honeycomb-Structured SiC Heating Elements (허니컴 구조 SiC 발열체 성능 평가 시뮬레이션)

  • Lee, Jong-Hyuk;Cho, Youngjae;Kim, Chanyoung;Kwon, Yongwoo;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.450-454
    • /
    • 2015
  • A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.

Analysis of induction heating using analysis of electro-magnetic field (전자기장 해석을 이용한 유도가열 해석)

  • Yun Jin-O;Yang Yeong-Su;Jo Si-Hun;Hyeon Chung-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.187-189
    • /
    • 2006
  • Transient finite element method for analysis of moving coil needs many number of elements and much time to make calculation. Therefore, induction heating process for moving coil was simulated by traveling the position of the heating planes in this paper. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Finite element program was developed and finite element results were compared with the experimental results.

  • PDF

Finite Element Analysis for Forming Process of Semi-Solid Material Considering Induction Heating (유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 해석)

  • Park, W.D.;Ko, D.C.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.82-91
    • /
    • 1997
  • The major objective of this study is to establish analytical technique in order to analyze the behaviour of semi-solid material considering induction heating of the billet. Induction heating process is analyzed by using commerical finite element software. ANSYS. The finite element program, SFAC2D, for the simulation of deformation in semi-solid state is developed in the present study. The semi-solid behaviour is described by a viscoplastic model for the solid phase, and by the Darcy's law for the liquid flow. Simple compression and closed-die compression process considering induction heating are analyzed, and also it is found that the distribution of initial solid fraction of the billet has an important effect on deformation behaviour of semi-solid material. In order to verify the effectiveness of proposed analytical technique the simulation result is compared with experimental result.

  • PDF

A FE-simulation for forming process of semi-solid material considering induction heating (유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 시뮬레이션)

  • 최원도;고대철;김병민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.110-114
    • /
    • 1996
  • The objective of this study is to consider the induction heating process and to develop the finite element program to analyze the behaviour of semi-solid materials. The semi-solid material is assumed to be composed of solid region as rigid visco-plastic model and liquid region following Darcy's law. Induction heating process is analyzed using finite element software, ANSYS, and also the behaviour of a semi-solid material considering induction heating is analyzed using developed finite element program.

  • PDF

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Design for Adhesive Carbon Heating Element X-ray Table with an Attached Heating Device (가열장치를 구비한 부착형 탄소발열체 X선 촬영대 고안)

  • Song, Jongnam;Kim, Eungkon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.3
    • /
    • pp.131-137
    • /
    • 2015
  • The purpose of this study is to warm up the conventional X-ray table by inventing and design for X-ray table with an attached heating device using less unloaded X-ray, CNT (carbon nano tube) heating element. Configuration of the product design for adhesive carbon heating element X-ray is composed of a conventional X-ray table, carbon nano tube planar heating element, an electrode line, flame resisting protective film, and the bottom film. Characteristics and advantages of this invented product is to provide gentle feeling, the sense of security, and eliminating anxiety to the patient wearing a patient gown and feel the cool air while receiving the test. Thus we are strongly recommend to use this device in the clinical situation.

Design and Simulation of Heating Rubber Roller for Laminating Process

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.280-285
    • /
    • 2016
  • The purpose of this study is to get optimum design and operation conditions of the heating rubber roller for laminating process. The cause of performance degradation of heating rubber roller is delamination of rubber on metal tube, rubber aging due to high temperature. We measured the material properties of thermal expansion, thermal conductivity, specific heat and density and analyzed thermal distributions of rubber layer using finite element method. As a result of heat/flow analysis, the density distribution of heating coil must shorten the stabilization time by reducing the temperature deviation on the length direction at the temperature rising section after increasing the density of the area contacting with the laminate film at the center part which is an opposite of the current composition while enabling to maintain the temperature of heater to be consistent while maintaining the temperature deviation to be low when heat loss is created. Finally, we determined optimum heating method of heating rubber roller.

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Relations between Input Parameters and Residual Deformation in Line Heating process using Finite Element Analysis and Multi-Variate Analysis (유한요소해석과 다변수해석에 의한 선상가열 변형관계식)

  • Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.69-80
    • /
    • 2002
  • Sequential process of roll-bending and line heating has been used to deform the curved hull-plates in shipyards. A growing interest for the mechanization or automation of the line heating process has been noted. Relations between heating conditions and residual deformations are important components needed for the mechanization. The residual deformations are investigated by using a thermal elastic-plastic analysis based on the finite element analysis(FEA). Several experiments are also performed to examine the validity of the results of FEA. The input parameters of line heating are suggested by dimensional analysis of line heating. The dimensional analysis can extract the primary input-parameters of line heating. The relations between the heating conditions and the residual deformations are set up by multi-variate analysis and multiple-regression method. This study suggests a method for the relation between the heating conditions and the deformations lying under the line heating.

A Study on the Heat-Diffusion Prediction of Induction Heating JAR using Finite Element Method (유한요소법을 이용한 IH-JAR의 열확산 예측에 관한 연구)

  • 오홍석
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, pre-heating for forging operations, melting or cooking. In this paper, the magneto-thermal analysis of an induction heating jar(IH-JAR) was presented as an efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FLUX2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was presented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.