• Title/Summary/Keyword: heating characteristics

Search Result 2,423, Processing Time 0.039 seconds

Effects of Dietary of By Products for Seaweed (Eucheuma spinosum) Ethanol Production process on growth performance, Carcass Characteristics and Immune Activity of Broiler Chicken (해조류 에탄올 공정 부산물 급여가 육계의 생산성, 도체 특성 및 면역 활성에 미치는 영향)

  • Kim, Ki Soo;Lee, Suk Kyung;Choi, Young Sun;Ha, Chang Ho;Kim, Won Ho
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • The present study was performed to assess the worth of using the by products for seaweed (Eucheuma spinosum) ethanol production process (SEPPB) as broiler feeds. For this purpose, 225 broiler chicks (white mini broilers) were used as experimental animals. The control (Control group) was fed with the broiler feeds. 5% mixture (5% SEPPB group) was fed with a 5% SEPPB mixture feeds, and the 10% mixture (10% SEPPB group) was fed with a 10% SEPPB group mixture feeds. The experiment was repeated for five times and 15 birds were assigned in each experiment and the experimental period was five weeks. There was no difference in the rate of weight gain until the second week of the 5% SEPPB group and 10% SEPPB group. However, the weight gain rate was increased to 6.2% for the 5% SEPPB group and 11.4% for the 10% SEPPB group as compared to the Control group at the third weeks of the experimental period. There was no statistical significant difference in terms of feed FCR and feed intake. Analyses of the quality of chicken breasts showed that pH was 2.5% higher in the 5% SEPPB group and 2.3% higher in the 10% SEPPB group. Shearing force was 31.3% lower in the 5% SEPPB group and 14.7% lower in the 10% SEPPB group, while heating loss was 14.4% lower for 5% SEPPB group and 10% SEPPB group when compared to the Control group. No significant differences were observed in terms of moisture, protein, and crude ash components in chicken breast analyses. However, crude fat was 36.8% higher in the 5% SEPPB group when compared to the Control group (P<0.05). Analyses of fatty acid in chicken breast meat showed that stearic acid was significantly higher in the 10% SEPPB group (P<0.05) and linolenic acid was significantly higher in 5% SEPPB group and 10% SEPPB group in comparison to the Control group (P<0.05). Interleukin-2 (IL-2) in blood serum was 44% higher in the 5% SEPPB group and 36% higher in the 10% SEPPB group (P<0.05). Interleukin-6 (IL-6) was similar in both the Control and the 5% SEPPB group, but it was 62% higher in the 10% SEPPB group in comparison to the Control group (P<0.05). Analyses of serum chemical values revealed that albumin was the highest in the 5% SEPPB group, followed by the Control group and then 10% SEPPB group.

Effect of Silicate-Coated Rice Seed on Healthy Seedling Development and Bakanae Disease Reduction when Raising Rice in Seed Boxes (벼 상자육묘에서 규산코팅볍씨의 건묘육성과 벼키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Jung;Roh, Jae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • We investigated the effect of silicate coating of rice seeds on bakanae disease incidence and the quality of seedlings raised in seedling boxes and transplanted into pots. The silicate-coated rice seed (SCS) was prepared as follows. Naturally infested rice seeds not previously subjected to any fungicidal treatment were dressed with a mixture of 25% silicic acid at pH 11 and 300-mesh zeolite powder at a ratio of 50 g dry seed - 9 mL silicic acid - 25 g zeolite powder. The following nursery conditions were provided : Early sowing, dense seeding in a glass house with mulching overnight and no artificial heating, which were the ideal conditions for determining the effect on the seed. The nursery plants were evaluated for Gibberella. fujikuroi infection or to determine the recovery to normal growth of infected nursery plants in the Wagner pot. Seedlings emerged 2-3 days earlier for the SCS than they did for the non-SCS control, while damping-off and bakanae disease incidence were remarkably reduced. Specifically, bakanae disease incidence in the SCS was limited to only 7.8% for 80 days after sowing, as compared to 91.6% of the non-SCS control. For the 45-days-old SCS nursery seedlings, the fresh weight was increased by 11% and was two times heavier, with only mild damage compared to that observed for non-SCS. Even after transplanting, SCS treatment contributed to a lower incidence of further infections and possibly to recovery of the seedlings to normal growth as compared to that observed in symptomatic plants in the pot. The active pathogenic macro-conidia and micro-conidia were considerably lower in the soil, root, and seedling sheath base of the SCS. In particular, the underdeveloped macro-conidia with straight oblong shape without intact septum were isolated in the SCS ; this phenotype is likely to be at a comparative etiological disadvantage when compared to that of typical active macro-conidia, which are slightly sickle-shaped with 3-7 intact septa. A active intact conidia with high inoculum potential were rarely observed in the tissue of the seedlings treated only in the SCS. We propose that promising result was likely achieved via inhibition of the development of intact pathogenic conidia, in concert with the aerobic, acidic conditions induced by the physiochemical characteristics associated with the air porosity of zeolite, alkalinity of silicate and the seed husk as a carbon source. In addition, the resistance of the healthy plants to pathogenic conidia was also important factor.

Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model (설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Hong Dong-Hee;Uhm Jae-Beop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Vol-oxidizer is a device to convert $UO_2$ pellets into $U_3O_8$ powder and to feed a homogeneous powder into a Metal Conversion Reactor in the ACP(Advanced Spent Fuel Conditioning Process). In this paper, we propose a design model of the vol-oxidizer, develop the new vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets, and conduct a verification for the device. Design considerations include the internal structure, the capacity, the heating position of the device, and the size. The dimensions of the new vol-oxidizer are decided by the design model. We determine a permeability test of the $U_3O_8$ measuring the temperature distribution, and the volume of $UO_2$ and $U_3O_8$. We manufactured the new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets, and then analyzed the characteristics of the $U_3O_8$ powder for the verification. The experimental results show that the permeability of the $U_3O_8$ throughout mesh enhance more than old vol-oxidizer, the oxidation time takes only 8 hours when compared with the 13 hours of the old device, and the average distribution of particle size is $40{\mu}m$. The capacities of new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets were agree well with the predictions of design model.

  • PDF

Processing and Characteristics of Canned Salt-Fermented Anchovy Fillet in Olive Oil (멸치육젓필레 기름담금통조림의 제조 및 특성)

  • Kwon, Soon-Jae;Lee, Jae-Dong;Yoon, Moon-Joo;Jung, Jae-Hun;Je, Hae-Soo;Kong, Cheung-Sik;Kim, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1175-1184
    • /
    • 2014
  • Fermented anchovy of the favorite sea food in Korea made from anchovy (Engraulis japonica) and salt. The study was undertaken to investigate the effects of different retorting conditions on the quality of canned salt-fermented anchovy fillet. The salt fermented anchovy fillet was prepared by fermenting anchovy(Engraulis japonica) with salt(15%) at $5^{\circ}C$ for 15 days and then cold air drying the fermented fillet for 1 hour. The dried fermented anchovy fillet(85g) was filled with olive oil(60g) into can(301-1) and seamed using a vacuum seamer, and then sterilized at Fo 9 and 11 mins in a steam system retort at 12 $1^{\circ}C$, respectively. After sterilization with different heating conditions, the pH, VBN, amino-N, color value (L, a, b), texture profile, TBA value, sensory evaluation and viable bacterial count of the canned salt-fermented anchovy fillet were measured. In both sterilized cans, the viable bacterial counts were not detected. There was no remarkable difference in physicochemical and sensory quality between sterilization conditions. The results showed that sterilization of Fo 9 min was more desirable than that of Fo 11 min to prepare canned salt-fermented anchovy fillet.

Analysis of growth environment for precision cultivation management of the oyster mushroom 'Suhan' (병재배 느타리버섯 '수한'의 정밀재배관리를 위한 생육환경 분석)

  • Lee, Chan-Jung;Lee, Sung-Hyeon;Lee, Eun-Ji;Park, Hae-sung;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.155-161
    • /
    • 2018
  • In this study, we analyze the growth environment using smart farm technology in order to develop the optimal growth model for the precision cultivation of the bottle-grown oyster mushroom 'Suhan'. Experimental farmers used $88m^2$ of bed area, 2 rows and 5 columns of shelf shape, 5 hp refrigerator, 100T of sandwich panel for insulation, 2 ultrasonic humidifiers, 12 kW of heating, and 5,000 bottles for cultivation. Data on parameters such as temperature, humidity, carbon dioxide concentration, and illumination, which directly affect mushroom growth, were collected from the environmental sensor part installed at the oyster mushroom cultivator and analyzed. It was found that the initial temperature at the time of granulation was $22^{\circ}C$ after the scraping, and the mushroom was produced and maintained at about $25^{\circ}C$ until the bottle was flipped. On fruiting body formation, mushrooms were harvested while maintaining the temperature between $13^{\circ}C$ and $15^{\circ}C$. Humidity was approximately 100% throughout the growth stage. Carbon dioxide concentration gradually increased until 3 days after the beginning of cultivation, and then increased rapidly to approximately 2,600 ppm. From the 6th day, $CO_2$ concentration was gradually decreased through ventilation and maintained at 1,000 ppm during the harvest. Light was not provided at the initial stage of oyster mushroom cultivation. On the $3^{rd}$ and $4^{th}$ day, mushrooms were irradiated by 17 lux light. Subsequently, the light intensity was increased to 115-120 lux as the growth progressed. Fruiting body characteristics of 'Suhan' cultivated in a farmhouse were as follows: Pileus diameter was 30.9 mm and thickness was 4.5 mm; stipe thickness was 11.0 mm and length was 76.0 mm; stipe and pileus hardness was 0.8 g/mm and 2.8 g/mm, respectively; L values of the stipe and pileus were 79.9 and 52.3, respectively. The fruiting body yield was 160.2 g/850 ml, and the individual weight was 12.8 g/10 unit.

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.

Evaluation of the Temperature Drop Effect and the Rutting Resistance of Moisture Retaining-Porous Asphalt Pavement Using Accelerated Pavement Testing (포장가속시험을 이용한 보수형 배수성 포장의 온도저감 효과 및 소성변형 저항특성 연구)

  • Kwak, Byoung-Seok;Suh, Young-Chan;Song, Chul-Young;Kim, Ju-Won
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2009
  • One of the main causes of asphalt rutting is high temperature of the pavement. Nevertheless, there has been few research on lowering the pavement temperature for reducing rutting. This study investigated the performance characteristics of moisture-retaining porous asphalt pavement, which is known to have a temperature reducing effect. The purpose of this study is to quantify the temperature reducing effect of moisture-retaining porous asphalt pavement and its effect of reducing rutting through Accelerated Pavement Testing(APT). Additionally, the possibility of reducing the thickness of the pavement in comparison to general dense grade pavement by analyzing structural layer coefficient of moisture retaining pavement. A total of three test sections consisting of two moisture-retaining porous asphalt pavement sections and one general dense-grade porous asphalt pavement section were constructed for this study. Heating and spraying of water were carried out in a regular cycle. The loading condition was 8.2 ton of wheel load, the tire pressure of $7.03kgf/cm^2$, and the contact area of $610cm^2$. The result of this experiment revealed that the temperature reducing effect of the pavement was about $6.6{\sim}7.9^{\circ}C$(average of $7.4^{\circ}C$) for the middle layer and $7.9{\sim}9.8^{\circ}C$(average of $8.8^{\circ}C$) for surface course, resulting in a rutting reduction of 26% at the pavement surface. Additionally, the structural layer coefficient of moisture retaining pavement measured from a laboratory test was 0.173, about 1.2 times that of general dense grade pavement. The general dense-grade porous asphalt pavement test section exhibited rutting at all layers of surface course, middle layer, and base layer, while the test sections of moisture-retaining porous asphalt pavement manifested rutting mostly at surface course only.

  • PDF

Radiolabeling of NOTA and DOTA with Positron Emitting $^{68}$Ga and Investigation of In Vitro Properties (양전자 방출핵종 $^{68}$Ga을 이용한 NOTA와 DOTA의 표지 및 시험관내 특성 연구)

  • Jeong, Jae-Min;Kim, Young-Ju;Lee, Yun-Sang;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.330-336
    • /
    • 2009
  • Purpose: We established radiolabeling conditions of NOTA and DOTA with a generator-produced PET radionuclide $^{68}$Ga and studied in vitro characteristics such as stability, serum protein binding, octanol/water distribution, and interference with other metal ions. Materials and Methods: Various concentrations of NOTA 3HCl and DOTA 4HCl were labeled with 1 mL $^{68}$GaCl$_3$ (0.18$\sim$5.75 mCi in 0.1 M HCl in various pH. NOTA 3HCl (0.373 mM) was labeled with $^{68}$GaCl$_3$(0.183$\sim$0.232 mCi/0.1 M HCl 1.0 mL) in the presence of CuCl$_2$, FeCl$_2$, InCl$_3$, FeCl$_3$, GaCl$_3$, MgCl$_2$ or CaCl$_2$ (0$\sim$6.07 mM) at room temperature. The labeling efficiencies of $^{68}$Ga-NOTA and $^{68}$Ga-DOTA were checked by ITLC-SG using acetone or saline as mobile phase. Stabilities, protein bindings, and octanol distribution coefficients of the labeled compounds also were investigated. Results: $^{68}$Ga-NOTA and $^{68}$Ga-DOTA were labeled optimally at pH 6.5 and pH 3.5, respectively, and the chelates were stable for 4 hr either in the reaction mixture at room temperature or in the human serum at 37$^{\circ}C$. NOTA was labeled at room temperature while DOTA required heating for labeling. $^{68}$Ga-NOTA labeling efficiency was reduced by CuCl$_2$, FeCl$_2$, InCl$_2$, FeCl$_3$ or CaCl$_3$, however, was not influenced by MgCl$_2$ or CaCl$_2$. The protein binding was low (2.04$\sim$3.32%). Log P value of $^{68}$Ga-NOTA was -3.07 indicating high hydrophilicity. Conclusion: We found that NOTA is a better bifunctional chelating agent than DOTA for $^{68}$Ga labeling. Although, $^{68}$Ga-NOTA labeling is interfered by various metal ions, it shows high stability and low serum protein binding.

Analysis of growth environment of Flammulina velutipes using the smart farm cultivation technology (병재배 팽이버섯의 스마트팜 재배를 통한 생육환경 분석)

  • Lee, Kwan-Woo;Jeon, Jong-Ock;Lee, Kyoung-Jun;Kim, Young-Ho;Lee, Chan-Jung;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2019
  • In this study, smart farm technology was used by farmers cultivating 'CHIKUMASSHU T-011' in order to develop an optimal growth model for the precision cultivation of bottle-grown winter mushroom and the results of the same are mentioned herein. Farmers participating in the experiment used 60 ㎡ of bed area with 4 rows and 13 columns of shelf shape, 20 horsepower refrigerator, 100T of sandwich panel for insulation, 6 ultrasonic humidifiers, 12 kW of heating, and 20,000 bottles of Flammulina velutipes mushroom spores. The temperature, humidity, and carbon dioxide concentrations, which directly affect the growth of the mushroom, were collected and analyzed from the environmental sensors installed at the winter mushroom cultivation area. The initial temperature was found to be 14.5℃, which was maintained at 14℃ to 15℃ until the 10th day. In the restriction phase, the initial temperature was 4℃ and was maintained between 2℃ and 3℃ until the 15th day, while during the growth phase, it was maintained between 7.5℃ to 9.5℃. Analysis of the humidity data revealed initial humidity to be 100%, which varied between 88% to 98% during primordia formation period. The humidity remained between 77% to 96% until the 15th day, in the restriction phase and between 75% to 83% during the growth phase. The initial carbon dioxide concentration was 3,500 ppm and varied between 3,500 ppm to 6,000 ppm during primordia formation period and was maintained at 6,000 ppm until the 15th day. During the growth phase, the carbon dioxide concentration was found to be over 6,000 ppm. Fruiting body characteristics of 'CHIKUMASSHU T-011' cultivated in the farmhouse were as follows: Pileus diameter of 7.5 mm and thickness of 4.1 mm, stipe thickness of 3.3 mm, and length of 154.2 mm. The number of valid fruiting bodies was 1,048 unit per 1,400 mL bottle, and the individual weight was 0.71 g per unit. The yield of fruiting bodies was 402.8 g per 1,400 mL bottle.