• Title/Summary/Keyword: heating capacity

Search Result 679, Processing Time 0.029 seconds

Development of Loop Heat Pipe Using Bubble Jet (Bubble Jet을 이용한 Loop Heat Pipe의 개발)

  • Kong, Sang-Woon;Ha, Soo-Jung;Jang, Jeong-Wan;Hwang, Jong-Ho;Son, Kil-Jae;Lee, Hyun-Jik;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1503-1506
    • /
    • 2009
  • Bubble jet loop heat pipe is a newly devised variation of heat pipe in which heat is effectively transported by the latent heat of evaporation and condensation as well as the heat capacity of circulating working fluid. The circulatory and oscillating motion of the working fluid becomes possible by the motion of bubble jet which is generated at a narrow circular gap. These bubbles are condensed at the condensing section. Bubble jet loop heat pipe makes it possible to carry heat long distances upward and horizontal directions. Because Its structure is a very simple and a low cost, it is available for the floor heating, vinyl house heating, the defrosting of heat pump system and home refrigerator.

  • PDF

EA Study on the Operation Performance of Central Plant Equipment According to Part Load Characteristics (부분부하 특성을 고려한 열원기기의 운전성능 평가)

  • Lee, Wang-Je;Kang, Eun-Chul;Lee, Euy-Joon;Oh, Byung-Chil;Shin, U-Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.392-397
    • /
    • 2013
  • To fulfill the demands concerning energy efficiency for zero energy buildings, various technologies of architects and engineers are required. This study aims to estimate the thermal performance of heat source equipment in which part load characteristics are considered in an office building. Overestimation of heat source equipment was reviewed through literature survey, and heating and cooling loads depending on the capacity and division of the equipment were analyzed through a simulation program (DOE-2.1E). The conclusions gained from this study are as follows; 1) The more the division of equipment, the less the heating and cooling energy consumption. 2) When a large item of equipment is divided into two small items of equipment, the optimum application rate showed as 5:5 for chiller, and 7:3 for boiler, respectively.

A Study on the Development of Low NOx Condensing Gas Boiler(II) -Design of Heat Exchanger and Performance of Boiler- (저 NOx 응축형 가스보일러 개발에 관한 연구(II) -원통형 열교환기 설계 및 응축보일러 성능-)

  • Lee, Chang-Eon;Geum, Seong-Min;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.244-251
    • /
    • 2001
  • This paper describes a design study of heat exchanger assembly to be used for low NOx condensing gas boiler. In this study, specifications of each heat exchanger components(upper and lower fin-type HEX, coil-type HEX, baffle) were investigated experimently by using model apparatus and analytical model, and comprehensive performances of the pilot gas boiler were examined. As a result, the boiler efficiency for heating and hot-water reached 90% and 94%, respectively. NOx and CO emission are less than 50ppm and 200ppm (0$_2$0% basis), respectively, which are very improved results than those of conventional bunsen-type boiler. But it is considered that supplementary investigations necessary for CO emission improvement and optimum design with boiler capacity.

Shapes and Thermomechanical Analyses of a Hot Roll for Manufacturing Electrodes of Polymer Batteries (폴리머 배터리 전극제조용 압연 고온롤 표면의 형상 및 유한요소 열변형 해석)

  • Kim, Cheol;Jang, Dong-Sue;Yu, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.847-854
    • /
    • 2007
  • The battery electrode of a mobile phone is made of layered polymer coated on aluminum foils and the hot rolling process is applied to increase the density per volume of an electrode for a high capacity battery. The flatness of batteries surfaces should be less than $2{\mu}m$. To satisfy the required flatness, the deformation of roll surface due to bending and heating of the roll should be minimized. Complicated hot oil paths of $100^{\circ}C$ inside the roll are required for heating the polymer layers. FEA was used to calculate thermal deformations and temperatures distributions of the roller. Based on FEA, a modified surface curvature called a crown roll was suggested and this gave the area of 30% improved flatness compared with a flat roll. The flat roll satisfied the flatness of $2{\mu}m$ in the length of 340 mm and the crown roll resulted in the longer length of 460 mm. Experiments to measure the temperature distribution and thermal strain were performed and compared with FEA. There were only 6% difference between two results.

Characteristics of the Thermal Degradation of Glucose and Maltose Solutions

  • Woo, Koan Sik;Kim, Hyun Young;Hwang, In Guk;Lee, Sang Hoon;Jeong, Heon Sang
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2015
  • In order to investigate the thermal degradation of glucose and maltose solutions after high temperature and high pressure (HTHP) treatment, the samples were treated at temperatures of 110, 120, 130, 140, and $150^{\circ}C$ for 1, 2, 3, 4, and 5 h in an apparatus for HTHP treatment. Glucose and maltose solutions (20% w/w) were prepared by weighing glucose and maltose and adding distilled water in the desired proportion. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugar contents, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) were evaluated. With increasing heating temperatures and times, the L-, a-, and b-values decreased. The pH and free sugar contents decreased, and organic acids and HMF contents increased with greater temperatures and times. EDA (%) and the AEAC of the heating sugars increased with the increases in temperatures and times.

Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

  • Lee, Hyun Jung;Son, Heung Soo;Park, Chung;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature (고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가)

  • Song, Hun;Kim, Young-Ho;Kim, Wan-Ki;So, Hyung-Suk
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Analysis of Recent 30-year Climate Characteristics by Natural Geography (자연지형 구분에 의한 최근 30년간 기후특성 분석)

  • Ryu, Yeon-Soo;Park, Mi-Lan;Kim, Jin-Wook;Joo, Hye-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.256-262
    • /
    • 2011
  • Environmental pollution by Using of a fossil fuel, a reckless and growth-oriented development since the Industrial Revolution has caused global change of environment. An issue largest among this is a climate change. A global mean temperature since 19th century has climbed up $0.4{\sim}0.8^{\circ}C$. After The Kyoto Protocol regarding a greenhouse gas reduction goal took effect, be situations that decrease of greenhouse gas was acutely required. Interest of utilization of the new & renewable energy is increasing every day. This study shows that at first divided a country to nine range by natural geography, and second executed Meteorological data analysis of recent 30 years considering level of significance by nine range. The results of this study are that in heating load calculation of building, periodic temperature data management is required because facility capacity and cost are affected greatly by outdoor temperature, and temperature by climate range needs consideration of pertinent area. Lastly, ground temperature was assumed of the weather in region, the ground and soil.

  • PDF

A Study on the Conditions of Drying Efficiency for Conveyor-Belt-Type Dryers Employing Continuous Decompression Indirect Heating Method (연속 감압-간접열 방식의 벨트형 건조장치를 이용한 건조효율 연구)

  • Ha, Sang-An;Kim, Dong-Kyun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.54-60
    • /
    • 2015
  • The objective of this study is to develop a belt-type dryer with a capacity of 1 ton/day, thereby improving drying efficiency by more than 70% and reducing the size of dryers by more than 50%, and thus making dryers smaller and lighter to reduce the installation and operation costs by more than 20%. We identified structural improvements by analyzing existing dryers employing indirect heating and verified the superior drying performance of the proposed method through some basic experiments. Furthermore, we verified the improvements in the heat transfer and drying characteristics as we conducted the experiments at reduced pressure.