• Title/Summary/Keyword: heating capacity

Search Result 677, Processing Time 0.025 seconds

A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank (축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.194-201
    • /
    • 2006
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump (GSHP) systems are recognized to be outstanding heating and cooling systems. A horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated the performance characteristics. The reasons for using thermal storage tank were discussed in detail. Thermal storage tank can provide heat for heating load that is larger than GSHP system heating capacity. The results of study showed that the heating coefficient of performance of the heat pump system was 2.69.

A Study on the Greenhouse Heating Performance of Heat Pump System (온실난방을 위한 히트펌프의 성능에 관한 연구)

  • 윤용철;서원명;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.94-102
    • /
    • 1998
  • This experiment was carried out to study on the effect of greenhouse heating by water-to-water heat pump system employing heating water tank(ground water) as the heat source. Followings are the results obtained from this study ; 1. The heat amount absorbed from evaporator and the heat amount rejected from condenser were approximately 9, 000~ 12, 000kcal/h and 13, 000~ 17, OOOkcal/h, respectively. 2. The heat efficiencies of evaporator and condenser used in this experiment were approximately 79% and 83%, respectively. 3. The maximum heating load estimated for the experimental greenhouse was about 18, 000 ~ 25, OOOkcal/h, which was found to be about 28 ~ 32% higher than the heating capacity of the heat pump system adopted for this experiment. 4. The coefficients of performance(COP) for the heat pump and the total heat pump system were approximately 2.9~3.5 and 1.5~2.4, respectively. 5. The coefficient of performance(COP) calculated from the Mollier Diagram was about 3.2 ~ 3.4, which was reasonably close to the COP estimated on the basis of measured values. 6. The temperature of experimental greenhouse heated by the heat pump system could be maintained about 12~15 。C higher than that of a control greenhouse.

  • PDF

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger (수평형 지열 히트펌프 시스템의 냉난방 성능 분석)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles (무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser (공기열원 2중히트싱크 열펌프의 성능해석)

  • Woo, J.S.;Lee, S.K.;Lee, J.H.;Park, H.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

Fuel Cell-based Cogeneration System for Greenhouse Cooling and Heating (온실 냉난방을 위한 연료전지 기반 열병합 발전 시스템)

  • JIN YOUNG PARK;TUANANH BUI;SEUNGYONG PARK;DONGKEUN LEE;YONGGYUN BAE;YOUNGSANG KIM;SANG MIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.667-672
    • /
    • 2023
  • This study proposes polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system for greenhouse heating and cooling. The main scope of this study is to examine the proposed cogeneration system's suitability for the 660 m2-class greenhouse. A 25 kW PEMFC system generates electricity for two identical air-cooled heat pumps, each with a nominal heating capacity of 70 kW and a cooling capacity of 65 kW. Heat recovered from the fuel cell supports the heat pump, supplying hot water to the greenhouse. In cooling mode, the adsorption system provides cold water to the greenhouse using recovered heat from the fuel cell. As a result, the cogeneration system satisfies both heating and cooling capability, performing 175 and 145 kW, respectively.

Experimental Study on Application of Multi-Stepwise TPSM (다단계 온도프리스트레싱 공법의 현장적용을 위한 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Kim, Sang-Hyo;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • Multi-stepwise Thermal Prestressing Method(TPSM) is a newly proposed prestressing method, which is combined the external prestressing method and the external bonding method. Multi-stepwise thermal prestressing force is induced by cooling process of cover-plate in the multi-stepwise temperature distribution after the cover-plate being bolted to the girder. In this study, the heating capacity test of the developed heating system for applying the multi-stepwise TPSM effectively and multi-stepwise TPSM inducing test of H-beam is performed. Also, a field test of the rhamen type temporary bridge is carried out to evaluate the effect and application of the multi-stepwise TPSM. Truck load was loaded and compared with the structure analysis results.

Effect of Heating Time and Mixed Coagulants for Prepared SPI Tofu (분리대두단백 두부의 제조를 위한 가열시간 및 혼합응고제의 영향)

  • Ku, Kyung-Hyung;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.26-30
    • /
    • 1994
  • The purpose of this study was to investigate the effects of heating times of soy protein isolate(SPI) and mixing ratio of coagulants mixture on water holding capacity(WHC) and oil absorption capacity (OAC) of SPI, texture properties and yield of tofu. The effect of heating at $100^{\circ}C$ on the amounts of coagulants required for coagulation showed that the amounts of $CaCl_{2},\;MgCl_{2}$ and GDL decreased as the heating time extended to $6{\sim}9$ minutes while $CaSO_{2}$ was changed little. The tofu yield showed maximum for the tofu prepared by 6 minutes boiling and coagulation with $CaSO_{4}$. The WHC of SPI was significantly reduced by heating at $100^{\circ}C$ while OAC was rather increased until 9 minutes of heating. The textural properties of SPI tofu coagulated with mixed coagulants$(CaSO_{4}-GDL,\;CaSO_{4}-CaCl_{2},\;CaCl_2-GDL)$ showed that softer tofu was obtained as the ratio of $CaSO_{2}$ increased and harder tofu as the ratio of $CaCl_{2}$ and GDL increased. The maximum and minimum tofu yields were prepared from 100% of $CaSO_{2}$ and 100% of GDL, respectively. Organoleptic properties showed that more uniform and tender tofu were obtained with higher portion of $CaSO_{2}$ in the mixed coagulants and higher intensity of sourness and bitterness were scored as the GDL and $CaCl_{2}$ added more.

  • PDF