• Title/Summary/Keyword: heating bed

Search Result 157, Processing Time 0.029 seconds

Spot Heating Technology Development for Strawberry Cultivated in a Greenhouse by Using Hot Water Pipe (온수배관을 이용한 시설딸기 부분난방기술 개발)

  • Moon, Jongpil;Kang, Geum-Choon;Kwon, Jin-Kyung;Paek, Yee;Lee, Tae Seok;Oh, Sung-Sik;Nam, Myeong-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.71-79
    • /
    • 2016
  • The effects of spot heating for growing the strawberry cultivated in a plastic greenhouse during the winter that were estimated in Nonsan strawberry experiment station located in Chungnam. The temperature of water for heating was controlled by a electric hot water boiler and kept at the range of $22{\sim}24^{\circ}C$. Heating pipes were set up in root zone for root zone heating and very close to crown for crown heating. Spot heating effects were estimated by applying spot heating system in three test factors of heating root zone, crown only and crown plus root zone. The material for crown heating pipe was white low density polyethylene and the nominal diameter of that pipe was 16 mm. The material for root zone heating pipe was flexible stainless steel and the nominal diameter of that pipe was 15A. The flow rate of heating water circulation was 480 L/h and water circulation lasted for all day long. Temperatures, harvest yield by test beds were surveyed from Nov. 10, 2013 to Apr. 29, 2014. The temperature of crown spot for crown heating bed was at the range of $13.0{\sim}17.0^{\circ}C$ during the night and that of crown spot in control bed was at the range of $8.0{\sim}14.0^{\circ}C$. Also, the temperature of root zone for root zone heating bed was at the range of $18{\sim}21.0^{\circ}C$ and that of root zone in control bed was at the range of $13.0{\sim}15.0^{\circ}C$. The cumulative yield growth rate in earlier harvest period (from Dec. 20 to Mar. 15) of crown heating bed was 43% compared with that of control bed and the cumulative yield of crown plus root zone heating bed was 39 % and that of root zone heating bed was 39 %.

An Experimental Study on the Fluidization and Heat Transfer Characteristics in the Gas-Solid Fluidized Bed Furnace (기일고(氣一固) 유동층노내(流動層爐內) 유동화(流動化) 및 전열특성(傳熱特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Gug-Gwang;Park, Jong-Suen
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.55-63
    • /
    • 1989
  • In this paper, the fluidization characteristics of the magnesia fluidized bed and the heat transfer characteristics with the specimen (SM55C) plunged in the bed have been investigated. To characterize the fluidization, the minimum fluidizing velocities and the relation ships between bed voidage and fluidization rate and obtained. To characterize heat transfer, the experiments for finding heating time transfer effect have been carried out by varying the magnesia particles sizes. optimum heating condition in the magnesia fluidized bed is obtained.

  • PDF

An Experimental Study on Heat Transfer Performance of Heating Medium Oil Fluidized Bed Heat Exchanger (열매체유 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.146-151
    • /
    • 2015
  • The heat transfer performance of heating medium oil fluidized bed heat exchanger was measured. The operation variables were air flow rate, air inlet temperature, moisture content, water flow rate and water inlet temperature. The outside heat transfer coefficient was determined from the heat exchanger experiment and its experimental correlation was determined as a function of air velocity and viscosity of heating medium oil. Effect of viscosity was well agreed with the previous studies. Errors of the correlation equation was less than about 10% for outside heat transfer coefficient developed in this study when compared with the measured value. Hot water with the temperature greater than $77^{\circ}C$ could be produced by using the heating medium oil fluidized bed heat exchanger.

Studies on a Effective Scheme to Obtain High Temperature Working Plasma for MHD Power Generation (MHD발전용 작동 플라즈마를 고온가열하기 위한 효율적 방안에 관한 연구)

  • 김윤식;노창주;김영길;공영경;최춘성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Heat transfer processes in the combustion chamber of a pebble bed regenerative heat exchanger for MHD power generation has been analyzed numerically for heating, evacuation argon heating periods individually. The calculated result well explain the measured temperature change at the top of the pebble bed. The analytical result point out that the length of evacution period and the geometry optimization both for the combustion chamber and the heat storage bed are very important factors for the improvement of thermal performance in MHD power generation.

Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes (가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave (유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Economic Evaluation of the Passive Solar-house Heating System Using the All-glass Evacuated Solar Collector Tubes and the Pebble Bed Heat Storage (자연형 태양열주택 난방시스템의 경제적 평가)

  • Jang, Moon-Ki;Yulong, Zhang;Zailin, Piao;Rhee, Shin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.43-48
    • /
    • 2008
  • The economics of a passive solar heating system (PSHS) with the pebble bed heat storage was evaluated, and the applications of the PSHS were analyzed, in this study. The results are as follows: The heating load, solar heat gain, and stored heat/year of the PSHS in the solar house model were found to be 10,778MJ, 3,438MJ, and 11,682MJ, respectively. The yearly energy expenses of the PSHS and the alternative heating system (conventional coal heating system, CCHS), which uses coal, were found to be USD 1.60/year and USD 60.90/year, respectively, and the yearly expenses of the PSHS were found to be 38 times less than those of the alternative heating system (CCHS). If it will be supposed that the life cycle of the passive solar heating system, according to the results of the LCC analysis in the two systems, is 40 years, the total expenses for the life cycle of the PSHS and the CCHS will be USD 1,431.50 and USD 2,740.00, respectively. The period for the investment payback of the PSHS is six years.

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

Elutriation and Production of Fines in a Fluidized Bed Coal Combustor (석탄유동층연소로에서 분진 발생 및 배출 특성)

  • 장현태;이종일
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • The effects of coal type and mixing fraction of coal on attrition and elutriation were studied in a 15. 5cm diameter fluidized bed coal combustor. The domestic low-grade anthracite coal with heating value 2010kcal/kg and the imported bituminous coal from Australia with heating value of 6520kcal/kg were used as coal sample. It was found from the experimental that the elutriation rate inclosed with an increseing anthracite mixing fraction. The size of elutriated particle had a very wide distribution was found in this experiment. The mean size of elutriated particle increased with decreaseing anthracite mixing fraction.

  • PDF

Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor (공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성)

  • 장현태;차왕석;태범석
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF