• Title/Summary/Keyword: heater

Search Result 1,747, Processing Time 0.037 seconds

Changes in Quality Characteristics of Seasoned Soy Sauce Treated with Superheated Steam and High Hydrostatic Pressure during Cold Storage (과열증기와 초고압 처리법을 적용한 간장 소스의 냉장저장 중 품질 특성 변화)

  • Choi, Yoon;Oh, Ji-Hye;Bae, In-Young;Cho, Eun-Kyoung;Kwon, Dae-Joong;Park, Hae-Won;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.4
    • /
    • pp.387-398
    • /
    • 2013
  • Seasoned soy sauce is one of the popular seasoning sauces added to the Korean traditional foods such as Bulgogi, Galbi. However, industrially processed sauces have poor sensory quality because of heating treatment for sterilization. The purpose of this study was to develop seasoned soy sauce having fresh taste and good quality by applying superheated steam (SHS) and high hydrostatic pressure (HHP) technologies. To maintenance the sauce qualities, food materials such as apple, onion, and garlic were pretreated with SHS (heater $100^{\circ}C$, steam $280^{\circ}C$, 30 s~1 min 30 s) before mixing with other ingredients. During storage of 7 days, color, pH, and browning potential of SHS treated samples (apple, onion and garlic) did not change and also polyphenol oxidase was inactivated (p<0.05). The seasoned soy sauce including SHS treated materials was sterilized by thermal process ($85^{\circ}C$, 30min) or non-thermal process, HHP (550 MPa, $5{\sim}10^{\circ}C$, 3 min). In SHS+HHP treated sauce, salinity, sugar contents, lightness, viscosity did not change (p<0.05), and total viable cell counts were detected below 4 log cycle at $5^{\circ}C$ for 30 days. E.coli and B.cereus are not determined in all samples. In sensory evaluation, Bulgogi prepared with SHS+HHP treated sauce was more acceptable than others.

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.

CFD Analysis for Microclimate of Venlo Type Glasshouse with the Screen Height and Air-inflow Quantity (스크린설치높이·공기유입량 차이에 따른 벤로형 유리온실 미기상 CFD 유동해석)

  • Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • The natural change of winter night temperature from 00:00 to 04:30 O'clock with the different height of thermal screen in a venlo type glasshouse (W59×L68×H5.9 m) was studied using computational fluid dynamics (CFD). At the early stage of CFD analysis, the room temperature decrease of glasshouse with the 5.9 m height of thermal screen were faster than it with the 4.1m height of thermal screen, but at 2 hr after analysis it was slower than in it with the 4,1m, the temperature difference was 0.6℃ after 4 hr. If we consider that turn on the heater when the temperature were decrease below 13℃ at 1hr after CFD analysis, it is good for energy saving in the glasshouse with the 4.1 m height of thermal screen rather than in it with the 5.9 m height, because of the temperature decrease were slow during 2 hrs after analysis. The airflow at the height of 2 m which were grown tomato were fast and wide in the glasshouse with the 5.9 m height thermal screen rather than in it with the 4.1 m, the speed difference was 0.034m·s-1 at 1hr after CFD analysis. The effect of temperature decrease in summer season were compared with the different height of shading screen from 12:00 to 14:30 O'clock. The height of shading screen were 5.7, 3.9 m, the gap of it were 30%. The air-inflow quantity by the fan with duct at lower part of venlo glasshouse was 0.67 ㎥·s-1 until 1hr and to increase 3 times of it from 1hr after analysis. The roof window were open 100%. Until 1hr of CFD analysis, the temperature in the 30% open of shading screen was 0.9℃ higher than in the none shading screen. From 13:00 O'clock when the air-inlet quantity to increase 3 times, the temperature in case 30% gap of shading screen were decreased compare with the none shading screen, the temperature difference was 0.5℃ at 14:30 O'clock. The temperature on the floor surface in case 30% gap of shading screen were lower with it's height increase, the temperature difference was 8℃ compare with none shading screen. The relative humidity difference were insignificant by the height and gap of shading screen.

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Insecticidal effect of imidacloprid to sucking, chewing insect pests, and predacious spiders (흡즙성 및 저작성 해충과 거미류에 대한 imidacloprid의 살충효과)

  • Choi, Byung-Ryul;Lee, Si-Woo;Song, Yoo-Han;Yoo, Jai-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.60-67
    • /
    • 1999
  • Insecticidal activities of imidacloprid to sucking type insect pests, brown planthopper (BPH, Nilaparvata lugens) and peen peach aphid (GPA Myzus persicae), to chewing type insect pests, tobacco cut worm (TCW; Spodoptera litura) and beet armyworm (BAW, Spodoptera exigua) and to spiders, Pirata subpiraticus, Pachygnata clercki and Ummeliata insecticeps, as natural enemies were investigated by several bioassay methods. $LD_{50}$ of the chemical by topical treatment to BPH was 0.015 ${\mu}g/g$(48 hrs), while $LC_{50}s$ by leaf dipping and root zone treatment were 18.1 and 21.5 ppm, respectively. There was no difference in insecticidal activities between leaf dipping and root zone treatment. Imidacloprid also showed ovicidal effect of root zone treatment and its $LC_{50}$ was 6.8ppm $LD_{50}$ (48 hrs after treatment) of imidacloprid to GPA was $0.4{\mu}g/g$ in case of topical application and $LC_{50}s$ by leaf dipping and root zone treatment were 1.9 ppm and 13.7 ppm respectively. Leaf dipping was more effective than root zone treatment in GPA At topical application $LD_{50}$ (48 hrs after treatment) of imidacloprid to chewing type insect pests, TCW and BAW, were greater than 1,492 and $312{\mu}g/g$ and $LC_{50}s$ by leaf dipping method were 4,803 and Heater than 5,000ppm respectively. This means that imidacloprid has much less effect on chewing type insect pests, TCW and BAW. $LD_{50}$(48 hrs after treatment) of imidacloprid to wandering spiders, Pirata subpiraticus, Pachygnata clercki at topical application were greater dan $2941{\mu}g/g$ and greater than $2,976{\mu}g/g$ respectively and that to webbing spider, Ummeliata insecticeps, was 357 ${\mu}g/g$. Imidacloprid showed very low toxicity to the spiders and its selective toxicity ratios between spiders and BPH were greater than 19,600, greater than 19,800 and 23,800, respectively.

  • PDF

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation (파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과)

  • Kwon, Jin Kyung;Jeon, Jong Gil;Kim, Seung Hee;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

Effect of Far-Infrared Irradiation on the Antioxidant Activity of Extracts from Grape Seed (포도씨의 항산화능에 대한 원적외선 처리의 효과)

  • Jeong, Seok-Moon;Kim, So-Young;Ha, Jung-Uk;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1619-1624
    • /
    • 2005
  • The effect of far-infrared (FIR) irradiation on the antioxidant activity of extracts from grape seed (GS) was evaluated. GS (5 g) were placed in Pyrex petri dishes (8.0 cm diameter) md FIR irradiated at 150$^{\circ}C$ for 10, 20, 30, 40 or 60 min with a FIR heater. After FIR irradiation, water extract (WE) (1.0 g/10 mL), methanol extract (ME) (1.0 g/10 mL) and 70$\%$ ethanol extract (EE) (1.0 g/10 mL) of GS were prepared, and total phenol contents (TPC) and radical scavenging activity (RSA) of the extracts were determined. The antioxidant activities of GS extracts increased as FIR irradiation. For example, FIR irradiation of GS at 150$^{\circ}C$ for 10 min increased the TPC and RSA of WE from 0.95 mM to 1.84 mM and 33,87$\%$ to 58.55$\%$, respectively, compared to non-irradiated control. In the case of ME at the same conditions of FIR irradiation (150$^{\circ}C$ for 10 min), the TPC and RSA also increased from 3.4 mM to 4.52 mM and 76.55$\%$ to 89.41$\%$, respectively. The TPC and RSA of EE increased from 2.65 mM to 4.82 mM and 66.89$\%$ to 84.62$\%$, too. According to the GC/MS analysis, several low-molecular-weight phenolic compounds such as vanillic acid and 3,4-hydroxy benzoic acid were newly formed in the EE after FIR irradiated at 150$^{\circ}C$ for 10 min. There were slight differences in the kinds of phenolic compounds between EE of non irradiated control and FIR irradiated samples. These results indicated that FIR irradiation onto GS could enhance antioxidant activities of its extracts with increasing the amount of phenolic compounds.