• Title/Summary/Keyword: heat-treated

Search Result 2,900, Processing Time 0.032 seconds

A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel (이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구)

  • 오세욱;윤한기;문인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

Disinfection effects of heat- and cold-treatment and UV-irradiation on campylobacter jejuni (고온 및 저온처리와 자외선조사에 의한 campylobacterjejuni의 살균효과)

  • 김치경;임선희;윤만석;오학식;조민기
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.291-296
    • /
    • 1989
  • Campylobacter jejuni was studied for its disinfection by heat-and cold-treatment and UV-irradiation. When C. jejuni was treated by heat, no viable cell was found after 10 min treatment at $55^{\circ}C$, whereas small fraction of cell population was survived after 60 min treatment at $45^{\circ}C$ and $50^{\circ}C$. When they were treated by cold temperature for 30 days, no cell was survived at -$23^{\circ}C$ but about 4 log of the cells were survived at both temperature of $4^{\circ}C$ and -$40^{\circ}C$. When the organisms were UV-irradiated, thier survival rates were proportionally varied to the distance of irradiation. The scanning electron microscopic studies of C. jejuni cells treated by the disinfecting agents revealed that shapes of thecells were deformed from spiral rod into spherical form. The heat-treated cells showed rough and damaged surface on the scanning electron micrographs. In the heat-treated cells, some proteins of high molecular weight appeared to become accumulated in the electrophoretic analysis. The DNAs extracted from the cells treated with the physical agents showed some differences in agarose gel electrophoresis, comparing those of normal cells.

  • PDF

The Effect of Nitrogen Plasma Treatment on Tribological Behaviors of Plasma-sprayed Zirconia Coatings

  • Lim, Dae-Soon;Shin, Jong-Han;Lee, Jung-Yeob;Cho, Chang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.602-607
    • /
    • 2001
  • Zirconia powder containing 3 mol% yttria (3Y-PSZ) was casted on the cast iron substrate by plasma spraying method. Coated specimens were then heat treated at 500$\^{C}$ in nitrogen plasma. Wear tests were performed on nitrogen heat treated and non heat treated samples at temperatures from 25$\^{C}$ to 600$\^{C}$. Wear results showed that the friction coefficient and the wear loss of both the treated and the non-treated samples showed maximum value at 400$\^{C}$. These results were explained by low temperature thermal degradation due to the monoclinic transformation. Nitrogen plasma treatment significantly improved the tribological performance. The effect of nitrogen heat treatment on tribological behavior was explained by the increased micro-hardness and decreased monoclinic faction.

  • PDF

Characterizing Small-scale Mechanical Behaviors of Heat-treated Materials with Nanoindentation Technique (나노압입시험법을 이용한 열처리 소재의 미소 변형 거동 평가)

  • Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • To improve the mechanical properties of most structural materials for industrial applications, the control of microstructure is essential by heat treatment process or plastic deformation process. Since the mechanical behavior of structural materials is significantly influenced by their microstructure, it is inevitably preceded to understand the relationship between microstructure and strengthening mechanisms of materials which can be easily changed by heat treatment. In this regard, the nanoindentation test is useful technique for analyzing the influence of the localized microstructural change on small-scale mechanical behavior of various structural materials. Here, the interesting studies performed on various heat-treated materials are reviewed with focus on micromechanical properties obtained by nanoindentation, which are reported in the available literature.

A Study on Surface Case Hardening of Blend Heat Treated Mild Steel (복합열처리(複合熱處理)한 연강(軟鋼)의 표면경화(表面硬化)에 관한 연구)

  • Chung, In-Sang;Chon, Hae-Dong;Sin, Soug-Mok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 1992
  • It is investigated that Fe-C-N compound layer, defusion layer, and induction hardened layer produced by nitrocarburizing blend heat treatment in austenitic temperature with high frequency induction heating of mild steel specimen sprayed sursulf salt-bath. As the temperature of blend-heat treatment got increased, the thickness and hardness of compound layer and diffusion layer were increased. Compound layer(max. $35{\mu}m$), diffusion layer (max. 2.5mm) and induction hardened layer were gained in the shortest time 10 sec and in the case of $1000^{\circ}C$ total hardness depth of those was about 3.5mm. When the blend-heat treated specimen was reheated, maximum hardness of compound layer was dropped more than that of the reheated compound layer after sursulf treated, whereas hardness of diffusion layer was increased.

  • PDF

Changes in Quality of PEF Treated Apple Juice during Storage (고전압 펄스 전기장 처리된 사과주스의 저장중 품질변화)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.375-379
    • /
    • 1999
  • This study was designed to develop non-thermal pasteurized fresh apple juice by applying pulsed electric field (PEF) treatment. The effect of non-thermal PEF treatment on physicochemical and sensory properties of apple juice was examined by measuring changes in vitamin C contents, colors, flavors and sensory properties. Color of PEF and heat treated apple juices was not significantly different from each other. Vitamin C content of PEF treated apple juice was close to that of fresh apple juice, but was much higher than that of heat treated apple juice. Heat treated apple juice lost 70% of flavor components, whereas PEF-treated apple juice lost only 15%. Sensory scores of PEF treated apple juice were significantly higher than heat-treated one in flavor, taste and overall acceptability. In conclusion, PEF treated apple juice had superior physico-chemical and sensory properties to heat-treated one.

  • PDF

FSP Mesurement of Heat-treated Hardwoods Using Volumetric Swelling Method (부피팽창률법을 이용한 활엽수 열처리 목재의 섬유포화점 측정)

  • Lee, Seung-Jin;Kang, Seog-Goo;Kang, Chun-Won;Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • Specimens of seven hardwood species were heat-treated at three temperature levels of 170, 190 and $210^{\circ}C$. Their FSP's were measured by the volumetric swelling method and compared with the control's. Within a species the FSP decreases as the temperature of heat treatment increases. The FSP's of the controls range from 26.1 to 29.6%, while those of the specimens heat-treated at $210^{\circ}C$ from 16.9 to 21.8%. There were no difference of basic density between the heat-treated and control specimens. The color indexes of ash and beech specimens were measured using a colorimeter. It was revealed that the temperature of heat treatment affected on the color more than the treatment time.

  • PDF

Physical and Mechanical Properties of Heat-treated Domestic Cedar (삼나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.330-339
    • /
    • 2009
  • The material properties of Cedar (Cryptomeria japonica) were evaluated according to heat treatment conditions. The special focus was made on the color control of cedar wood by heat treatment. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature above $170^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition than the control. The heat-treated wood was also effective in increasing the durability against wood rotting fungi. However, more study is required to develop heat treatment as an environmentally-friendly technology for wood preservation without chemical. The mechanical properties of heat-treated wood showed relatively higher performance than the control in general. Meanwhile the dramatic decrease in impact bending stress due to the loss of ductility may limit uses of heat-treated wood in certain cases. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study on the chemical analysis of heat-treated wood is needed to scrutinize the causes of changes of material properties.

The Study of Corrosion Behavior for Solution and Aging Heat Treated Ti alloy (Ti 합금의 용체화열처리와 시효열처리에 따른 부식거동)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2016
  • Titanium is resistant to general corrosion and in sea water because of the passivity layer film on the surface of material, but may be attacked by environments that cause breakdown of the protective oxide layer including hydrochloric, sulfuric and phosphoric acids. In this study, the Ti alloys were solution heat treatment 5hours at $1066^{\circ}C$ and $966^{\circ}C$, and followed by aging heat treated, 1, 4, 8 and 16 hours in $500^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ respectively. The heat treated specimens were measured micro Vicker's hardness, and then accomplished electrochemical polarization test for comparing corrosion in 1N sulfuric acid solution. Additionally, micro structures were taken for corrosion tested specimens. The results showed that corrosion resistance was higher in solution heat treated alloy than base and age heat treated metal. Measured corrosion resistants were increased as increasing aging heat treatment time and temperature.

A STUDY ON THE DISTORTION OF THE COPINGS FOR CERAMOMETAL CROWNS DURING REPEATED FIRING (도재전장금관을 위한 코핑의 변형에 관한 연구)

  • Lee, Ki-Hong;Chung, Hun-Young;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.706-718
    • /
    • 1997
  • Ceramometal crowns are common restorations in fixed prosthodontics because of their casting accuracy, the high strength properties of the metal, and the cosmetic appearance of porcelain. However, deterioration of the initial fit of the metal coping has been observed after the porcelain firing cycle. The distortion due to repeated firing makes it difficult to fit crown margin and elicits microleakage. The major causes of distortion are the residual stress that accumulate during wax-up, casting, cold work and the induced stress caused by the mismatch of porcelain-metal thermal contraction. This study examined the marginal fit changes of metal copings in relation to repeated firing and the effects of heat treatment that reduce the distortion resulted from residual stress. The marginal changes of the copings that were treated with conventional method and those treated with heat before repeated firing, were evaluated. The metal die which represented preparations of a maxillary central incisor was fabricated, and 45 wax patterns were cast with nonprecious metal alloys. The heat treatment of each group was performed as follows. Group 1(control) : Casting - Devesting - Cold work - Firing Group 2 : Casting - Heat treatment - Devesting - Cold work - Firing Group 3 : Casting - Devesting - Cold work - Reinvesting - Heat treatment - Devesting - Firing The copings were fired 3 times. After each firing, the marginal fit changes were measured with inverted metallurgical microscope at the 4 reference points located at labial, lingual, and both proximal surface. Measurements were compared, and statistically analyzed. The results were as follows ; 1. In all groups, the highest value of marginal fit changes of the copings studied were found after the first firing cycle. 2. When the distortion of each experimental group at the first firing cycle were compared, group 1 exhibited the greatest changes($20-27{\mu}m$), followed by group 2($9-13{\mu}m$), and group 3($8-10{\mu}m$). 3. The copings treated with heat before devesting(group 2) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 4. The copings treated with heat after reinvesting(group 3) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 5. No siginificant differences in marginal fit changes were found between the copings treated with heat before devesting(group 2) and the copings treated with heat after reinvesting(group 3). (p>0.01)

  • PDF