• Title/Summary/Keyword: heat-transfer analysis

Search Result 2,760, Processing Time 0.031 seconds

Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin (개량 루버핀에 의한 열전달 성능향상에 관한 연구)

  • Chung, Jae-Dong;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process (용탕단조시 가압력에 따른 계면열전달계수의 변화)

  • Kim, Jin-Soo;Ahn, Jae-Young;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

Analysis of turbulent heat transfer over V-shaped ribs (V-형 사각리브에 의한 난류열전달 해석)

  • Lee, Young-Mo;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.169-172
    • /
    • 2005
  • Numerical analysis of turbulent flow in three-dimensional channel with V-shaped ribs extruded on both walls has been carried out. Reynolds-averaged Navier-Stokes are calculated for analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for heat transfer rate show good agreements with experimental data.

  • PDF

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF

Numerical Estimation of Heat flux on the Deck Exposed to the High Temperature Impinging Jet of VTOL Vehicle (수직 이착륙기의 고온 고속 배기열에 의한 함정 갑판의 열유속 계산을 위한 수치모델)

  • Jang, Hosang;Hwang, Seyun;Choi, Wonjun;Lee, Jang Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.74-85
    • /
    • 2018
  • This study has analyzed the convective heat transfer on the deck exposed to the high-temperature impingement exhausting from a VTOL vehicle. The heat flow of the impingement on the deck is modeled by the convection heat transfer. The convective heat flux generated by the hot impinging jet is investigated by using both convective heat transfer formulation and conjugate heat transfer formulation. Computational fluid dynamics(CFD) code was used to compute the heat flux distribution. The RANS equation and the k-e turbulence model were used to analyze the thermal flow of the impinging jet. The heat flux distribution near the stagnation zone obtained by the conjugate heat transfer analysis shows more reasonable than the convective heat transfer analysis.

Characteristics of Heat Transfer for Small-size Marine Diesel Engine (소형박용 디젤엔진의 전열특성)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures (순수 및 혼합냉매의 유동증발 열전달 상관식)

  • Shin, J.Y.;Kim, M.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.254-266
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants(R22, R32, R125, R134a, R290, and R600a) and refrigerant mixtures(R32/R134a and R290/R600a) are measured experimentally and compared with several correlations. Convective boiling term of Chen's correlation predicts experimental data for pure refrigerants fairly well(root-mean-square error of 12.1% for the quality range over 0.2). An analysis of convective boiling heat transfer of refrigerant mixtures is performed for an annular flow to study degradation of heat transfer. Annular flow is the subject of this analysis because a great portion of the evaporator in refrigeration or air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor phases, which is considered as a driving force for mass transfer at interface, is included in this analysis. Correction factor $C_F$ is introduced to the correlation for the pure substances through annular flow analysis to apply the correlation to the mixtures. The flow boiling heat transfer coefficients are calculated using the correlation considering nucleate boilling effect in the low quality region and mass transfer effect for nonzazeotropic refrigerant mixtures.

  • PDF

Heat transfer analysis on the heat exchanger of a stirling cycle machine (스터링 사이클 기기 열교환기의 열전달 해석)

  • Lee, Dae-Yeong;Jo, Gwan-Sik;No, Seung-Tak;Kim, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1385-1394
    • /
    • 1996
  • A theoretical analysis was performed on the heat transfer by laminar oscillating flow in a simplified heat exchanger of a Stirling cycle machine and the results were compared with the experiment of Hwang. In the analysis the general solution to the temperature field obtained by Lee et. al was applied and extended to a more realistic situation. The results show that the heat transfer is influenced by the ratio of the swept distance of the fluid to the length of the heat exchanger as well as the oscillation frequency. This is well consistent with the result of Hwang's experiment. It is also revealed that there exist three distinct regimes having different heat transfer mechanisms. Through the scale analysis the main parameters governing the heat transfer in each regime are reduced and the dependency of the heat transfer on the parameters are examined.

Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow (열성층 배관 유동에 대한 3차원 열전달 해석)

  • Jo Jong Chull;Kim Byung Soon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF