• 제목/요약/키워드: heat-transfer

검색결과 7,618건 처리시간 0.047초

충돌공기제트에서의 다공성 방열기의 열전달 특성 (Heat Transfer from a Porous Heat Sink by Air Jet Impingement)

  • 백진욱;김서영;강병하
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

열전달 해석에 의한 파워 증폭기 방열기의 형상 최적화 (Shape Optimization of Heat Sink for Power Amplifier by Heat Transfer Analysis)

  • 이동렬
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.1-6
    • /
    • 2011
  • In order to find better performance of heat sink, in this research, different cases were analysed by changing number of slots and shape of fins. Round shape fins which have wide surface showed 24% better heat transfer rate than vertical fins. There were not big discrepancies between 1 slot and 2 slots fins. Consequently, for better performance of heat sink, developments for widening surface and better material for high heat transfer rate are needed.

수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달 (Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube)

  • 박기원;오후규
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성 (Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b)

  • 김주형;곽태희;김종보
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

코일형 나선 전열관의 내부 응축열전달 특성에 관한 실험 적 연구 (Experimental Study on In-Tube Condensation Heat Transfer Characteristics of Helically Coiled Spiral Tubes)

  • 박종운;권영철;한규일
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1676-1683
    • /
    • 2001
  • An experimental study on condensation heat transfer characteristics of helically coiled spiral tubes was performed. The refrigerant is R-113. A refrigerant loop was established to measure the condensation heat transfer coefficients. Experiments were carried out uniform heat flux of 15 kw/m$^2$, refrigerant quality of 0.1∼0.9, curvature ratio of 0.016, 0.025 and 0.045. The curvature of a coil was defined as the ratio of the inside diameter of the tube to the diameter of the bending circle. To compare the condensation heat transfer coefficients of coiled spiral tubes, the previous results on coiled plain tubes and straight plain tubes were used. The results shows that the condensation heat transfer coefficients of coiled spiral tubes largely increase, as increasing Re and quality, compared to those of coiled plain tubes and straight plain tubes. As increasing degree of subcooling, however, the condensation heat transfer coefficients on coiled spiral tubes decrease. It is found that the heat transfer enhancement is more better than coiled plain tubes and straight plain tubes, as increasing curvature ratio.

R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향 (Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube)

  • ;최광일;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

Effect of Micro Grooves on the Performance of Condensing Heat Transfer of the Micro Grooved Thermosyphons

  • Han, Kyu-Il;Cho, Dong-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.184-191
    • /
    • 2002
  • This study concerns the performance of the condensing heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal micro grooves. Distilled water, methanol, ethanol have been used as the working fluid. The numbers of grooves and operating temperature have been investigated as the experimental parameters. Condensing heat transfer coefficients and heat flux are obtained from experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, numbers of grooves are very important factors for the operation of thermosyphons. The working fluid with high latent heat such as water has a good heat transfer rate compared to methanol and ethanol. The relatively high rate of heat transfer is achieved when the thermosyphon with internal micro grooves is used compared to that with plain tube. Condensing heat transfer coefficient of grooved thermosyphon is 1.5∼2 times higher in methanol and 1.3∼l.5 times higher in ethanol compared to plain tube. The best condensation heat transfer performance is obtained for 60 grooves, and the maximum value of this case is 2.5 times higher than that of the plain tube.

입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)) (Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow))

  • 김광철;류지오;양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

탄소나노튜브 및 그래핀 나노유체 사용시 장기운전에 따른 열전달성능 변화에 대한 연구 (Study on Heat Transfer Performance Change According to Long-term Operation Using Carbon Nanotube and Graphene Nanofluid)

  • 김영훈;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.15-23
    • /
    • 2017
  • Critical heat flux refers to the sudden decrease in boiling heat transfer coefficient between a heated surface and fluid, which occurs when the phase of the fluid near the heated surface changes from liquid to vapor. For this reason, critical heat flux is an important factor for determining the maximum limit and safety of a boiling heat transfer. Recently, it is reported that the nanofluid is used as a working fluid for the critical heat flux enhancement. However, it could be occurred nano-flouling phenomena on the heat transfer surface due to nanoparticles deposition, when the nanofluid is applied in a heat transfer system. In this study, we experimentally carried out the effects of the nano-fouling phenomena in oxidized multi-wall carbon nanotube and oxidized graphene nanofluid systems. It was found that the boiling heat flux decreased by hourly 0.04 and $0.03kW/m^2$, also the boiling heat transfer coefficient decreased by hourly 11.56 and $10.72W/m^2{\cdot}K$, respectively, in the thermal fluid system using oxidized multi-wall carbon nanotube or oxidized graphene nanofluid.

하천수를 이용하는 열교환 시스템 내 파울링 형성에 관한 연구 (A Study on the Formation of Fouling in a Heat Exchanging System for River Water)

  • 성순경;서상호;노형운
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.646-651
    • /
    • 2004
  • When the water flowing inside of the heat transfer equipments such as heat exchangers, condensers, and boilers is heated, calcium, magnesium sulfate, and other minerals in the water are deposited and built up for scales on the heat transfer surfaces. When those scales accumulate on the heat transfer surfaces, their performance of the heat transfer become progressively reduced due to the increase of the heat transfer resistance. The mechanism of this reduced heat transfer is called fouling. This study investigated the formation of the fouling in a heat exchanger with river and tap water flowed inside of it as a coolant. In order to visualize the formation of the fouling and to measure the fouling coefficients, a lab-scale heat exchanging system was used. Based on the experimental results, it was found that the formation of fouling for river water was quite different with the formation for tap water.