• 제목/요약/키워드: heat-stability

검색결과 1,578건 처리시간 0.027초

빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성 (Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink)

  • 김남태;최종민;손병후;백성권;이동철;양희정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

유한요소법을 이용한 유기압 현수장치의 열전달 해석 (Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method)

  • 배징도;조진래;이홍우;송정인;이진규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

Optimization of spent nuclear fuels per canister to improve the disposal efficiency of a deep geological repository in Korea

  • Jeong, Jongtae;Kim, Jung-Woo;Cho, Dong-Keun
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2819-2827
    • /
    • 2022
  • The disposal area of a deep geological repository (DGR) for the disposal of spent nuclear fuels (SNFs) is estimated considering the spacing between deposition holes and between disposal tunnels, as determined by a thermal analysis using the decay heat of a reference SNF. Given the relatively large amount of decay heat of the reference SNF, the disposal area of the DGR is found to be overestimated. Therefore, we develop a computer program using MATLAB, termed ACom (Assembly Combination), to combine SNFs when stored in canisters such that the decay heat per canister is evenly distributed. The stability of ACom was checked and the overall distribution of the decay heat per canister was analyzed. Finally, ACom was applied to disposal scenarios suggested in the conceptual design of a DGR for SNFs, and it was confirmed that the decay heat per canister could be evenly distributed and that the maximum decay heat of the canister could be much lower than that of a canister estimated using a reference SNF. ACom can be used to improve the disposal efficiency by reducing the disposal area of a DGR for SNFs by ensuringg a relatively even distribution of decay heat per canister.

형성조건에 따른 TiN/Ti Barrier Metal의 Al 및 Si 과의 열적 안정성 (Thermal Stability of TiN/Ti Barrier Metals with Al Overlayers and Si Substrates Modified under Different Annealing Histories)

  • 신두식;오재응;유성룡;최진석;백수현;이상인;이정규;이종길
    • 전자공학회논문지A
    • /
    • 제30A권7호
    • /
    • pp.47-59
    • /
    • 1993
  • 16M DRAM 용 Al/Si contact 의 열적안정성을 개선하기 위하여 "stuffed" TiN/Ti diffusion barrier를 사용하였다. Diffusion barrier 로서의 특성을 개선하기 위한 Al 증착전 TiN/Ti barrier metal의 열처리 과정중 barrier metal의 두께, 열처리온도, 분위기 등을 변화시켰다. 질소분위기하에서 450도에서 TiN(900A)/Ti(300A) 박막을 열처리 하여 "stuffed" barrier metal을 형성 시켰을 경우 Al 원자의 TiN층으로의 확산의 600도에서 후속열처리한 경우 일어났으나, 700도까지도 Al-spike를 관찰할 수 없었다. 그러나 "stuffed" barrier metal을 550도에서 형성한 경우에는 600도의 후속열처리온도에서 Al이 Si 기판으로 침투했음을 관찰하였다. 박막의 두께를 얇게한 경우, 600도의 후속 열처리에서 Al-spike가 형성되었음을 확인하였다.

  • PDF

고온 열기 처리에 의한 낙엽송재의 물리·역학적 성능 및 내부후성능 변화 고찰 (Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air)

  • 박용건;한연중;박준호;장윤성;양상윤;정현우;김경중;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권3호
    • /
    • pp.334-343
    • /
    • 2015
  • 본 연구에서는 국내에서 상업적으로 이용되고 있는 국산 낙엽송 열처리재의 여러 가지 물성(밀도, 평형함수율, 수축률, 흡습/흡수성, 종/횡압축강도, 휨강도, 경도, 내부후성능)을 정량적으로 평가하기 위하여 수행되었다. 고온처리에 의해 목재의 소수성이 증가함에 따라 평형함수율이 감소하였다. 이에 따라 수축률 및 흡습/흡수성이 감소하여 치수안정성이 개선되었고, 낮은 함수율의 영향으로 압축강도가 증가하였으며, 목재 주성분의 변화와 낮은 함수율의 영향으로 내부후성능이 개선되었다. 하지만 열처리에 의해 밀도와 휨강도 및 경도는 감소하였다.

히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질 (Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes)

  • 정지윤;임혜원;김혜원;이상민;김형모
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

Enhancement of Electrical Properties on ZnO: Al Thin Film due to Hydrogen Annealing and SiO2 Coating in Damp-heat Environment

  • Chen, Hao;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.58-61
    • /
    • 2009
  • The electrical stability of ZnO: Al thin films deposited on glass substrate by the RF magnetron sputtering method have been modified by a hydrogen annealing treatment and $SiO_2$ protection layer. AZO thin films were deposited at room temperature and different RF powers of 50, 100, 150, and 200 W to optimize the AZO film growth condition. The lowest value of resistivity of $9.44{\times}10^{-4}{\Omega}cm$ was obtained at 2 mtorr, room temperature, and a power level of 150 W. Then, the AZO thin films were annealed at $250-400^{\circ}C$ for 1 h in hydrogen ambient. The minimum resistivity obtained was $8.32{\times}10^{-4}{\Omega}cm$ as-annealed at $300^{\circ}C$. The electrical properties were enhanced by the hydrogen annealing treatment. After a 72 h damp-heat treatment in harsh conditions of a water steam at $110^{\circ}C$ for four representative samples, a degradation of electrical properties was observed. The sample of hydrogen-annealed AZO thin films with $SiO_2$ protection layer showed a slight degradation ratio(17%) of electrical properties and a preferable transmittance of 90%. The electrical stability of AZO thin films had been modified by hydrogen annealing treatment and $SiO_2$ protection layer.

Enhanced compatibility and initial stability of Ti6Al4V alloy orthodontic miniscrews subjected to anodization, cyclic precalcification, and heat treatment

  • Oh, Eun-Ju;Nguyen, Thuy-Duong T.;Lee, Seung-Youp;Jeon, Young-Mi;Bae, Tae-Sung;Kim, Jong-Gee
    • 대한치과교정학회지
    • /
    • 제44권5호
    • /
    • pp.246-253
    • /
    • 2014
  • Objective: To evaluate the bioactivity, and the biomechanical and bone-regenerative properties of Ti6Al4V miniscrews subjected to anodization, cyclic precalcification, and heat treatment (APH treatment) and their potential clinical use. Methods: The surfaces of Ti6Al4V alloys were modified by APH treatment. Bioactivity was assessed after immersion in simulated body fluid for 3 days. The hydrophilicity and the roughness of APH-treated surfaces were compared with those of untreated (UT) and anodized and heat-treated (AH) samples. For in vivo tests, 32 miniscrews (16 UT and 16 APH) were inserted into 16 Wistar rats, one UT and one APH-treated miniscrew in either tibia. The miniscrews were extracted after 3 and 6 weeks and their osseointegration (n = 8 for each time point and group) was investigated by surface and histological analyses and removal torque measurements. Results: APH treatment formed a dense surface array of nanotubular TiO2 layer covered with a compact apatite-like film. APH-treated samples showed better bioactivity and biocompatibility compared with UT and AH samples. In vivo, APH-treated miniscrews showed higher removal torque and bone-to-implant contact than did UT miniscrews, after both 3 and 6 weeks (p < 0.05). Also, early deposition of densely mineralized bone around APH-treated miniscrews was observed, implying good bonding to the treated surface. Conclusions: APH treatment enhanced the bioactivity, and the biomechanical and bone regenerative properties of the Ti6Al4V alloy miniscrews. The enhanced initial stability afforded should be valuable in orthodontic applications.

Calcium Alginate Hydrogel 모조어란의 품질 안정성에 대한 Xanthan Gum 처리의 영향 (Effects of Xanthan Gum Treatment on the Quality and Stability of Imitation Fish Roe Based on Calcium Alginate Hydrogels)

  • 정충은;조은희;김선봉;조승목
    • 한국수산과학회지
    • /
    • 제53권4호
    • /
    • pp.583-587
    • /
    • 2020
  • Imitation fish roe (IFR) based on calcium alginate hydrogels (CAG) can be heat treated for sterilization and salted to prolong the shelf life. However, these processes change the physical properties of IFR, and it is necessary to minimize these changes. In this study, we investigated the effects of xanthan gum (XG) treatment on the quality and stability of IFR. Both non-XG and XG-treated IFRs were treated with boiling water (95℃), sodium chloride (0.5-2.0%, w/v), and autoclaving. The non-XG treated IFR shrunk slightly after the boiling water and autoclaving processes. By comparison, shrinkage of the XG-treated IFR after autoclaving was significantly reduced. The sphericity of the non-XG treated IFR was reduced by the boiling water, sodium chloride, and autoclaving treatment. However, the sphericity of the XG-treated IFR was maintained by 90% or more, preserving the IFR shape at a level visually recognized as spherical. In addition, unlike the non-XG treated IFR, the XG-treated IFR showed high rupture strength even after the salt and heat treatments. Our findings provide useful information for the industrialization of IFR based on CAG with heat and salt treatments.